cod. 1006552

Academic year 2023/24
1° year of course - Second semester
- Franca ZANARDI
Academic discipline
Chimica organica (CHIM/06)
Discipline chimiche
Type of training activity
86 hours
of face-to-face activities
9 credits
course unit

Learning objectives

At the end of the course, the student is expected to be able to:
1) Know the main organic compounds according to the corresponding functional groups, their chemical-physical properties, their reactivity, including carbohydrates, lipids and proteins (Knowledge and understanding).
2) infer the properties of a compound starting from its molecular structure; apply the knowledge of the organic chemistry methodologies to the study of compounds present in food; solve operational problems related to the properties of organic compounds. (Applying knowledge and understanding).
3) use a formally correct language in the field of organic chemistry; be able to communicate the key concepts of organic chemistry in different interdisciplinary contexts (Communication skills).
4) connect the macroscopic properties of a food to the chemical-physical properties of the compounds contained in it (Making judgments)
5) Have the bases to be able to consult texts with a high technical specific content for the resolution of complex problems concerning the properties of organic molecules (Learning skills).


The course of General Chemistry is a prerequisite

Course unit content

The course in Organic Chemistry deals with the study of the properties and reactivity of organic molecules, described in a systematic way through the study of functional groups. In order to better understand the fundamental concepts of the molecular approach, typical of organic chemistry, guided exercises will be used as a systemic part of the course.
The main functional groups of the molecules present in foods will be treated: alkanes, alkenes, alkynes, haloalkans, alcohols, ethers, epoxides, thiols and sulphides, aromatic and heteroaromatic compounds, aldehydes and ketones, carboxylic acids and derivatives (acyl chlorides, anhydrides, esters , amides). The three main classes of macronutrients (carbohydrates, proteins, lipids) will also be described in the light of the chemistry of the functional groups contained in them.

Full programme

0) Review of key concepts of General Chemistry: valence, resonance, thermodynamics, kinetics, acid-base properties. Calculation of the formal charge, electronegativity, ionic bonds, pure and polarized covalent bonds, the concept of functional group in organic chemistry
1) Alkanes: structure, nomenclature, chemical-physical properties, conformations. Cycloalcanes and their conformations. C-H bond reactivity: combustion, auto-oxidation, halogenation. Carbon radicals. Oxidation number of organic compounds. Haloalkanes: chemical-physical properties.
2) Chirality. Relative and absolute configuration. Enantiomers and diastereoisomers. Meso forms. Importance of chirality in the biological world.
3) Alkenes, structure, nomenclature and properties. Cis-trans isomerism. Dienes, conjugation effects. Alkynes. Electrophilic addition mechanism to the double bond: addition of halogenidric acids, water, halogens. Hydrogenation of the double bond. Polymerization, synthetic and natural polymers.
4) Reactions of haloalkanes: the concepts of nucleophile and electrophile. Nucleophilic substitution reactions, SN2 and SN1 mechanisms. Carbocations. Elimination reactions, mechanisms E2 and E1.
5) Alcohols: structure, nomenclature, chemical-physical properties, reactivity: SN2, SN1, E1 reactions. Ethers and epoxides: structure and reactivity. Tiols and sulfides: structure and reactivity. Amines: structure and reactivity.
6) Aromatic compounds, aromaticity and Huckel rules. Aromatic electrophilic substitution. Heteroaromatic. Phenols and aromatic amines.
7) Aldehydes and ketones: structure, nomenclature and chemical-physical properties. Nucleophilic addition mechanism. Water addition. Addition of alcohols: formation of hemiacetals and acetals. Addition of amines: imine formation. Reduction and alkylation of aldehydes and ketones. Oxidation of aldehydes, recognition essays. Keto-enol tautomerism, alkylation of enolates, aldol condensation, Claisen condensation
8) Carbohydrates. Structure of aldose and ketose monosaccharides, in solution conformations, mutarotation. Glycosides: formation and hydrolysis in an acid environment. Oxidation of sugars, reducing sugars. Reduced sugars. Reactions with amines, caramelization reaction. Disaccharides: maltose, cellobiose, lactose, sucrose. Hydrolysis of disaccharides, invert sugar. Polysaccharides: amylose, amylopectin, starch, glycogen, cellulose.
9) Carboxylic acids: structure, nomenclature, acid-base properties. Fischer esterification. Derivatives of carboxylic acids: acyl chlorides, anhydrides, esters, amides: nomenclature and properties. Catalyzed and non-catalyzed nucleophilic acyl substitution Reactions with water (hydrolysis) in an acid and basic environment.
10) Lipids. Structure and properties of fatty acids and triglycerides. Triglyceride reactions formed by saturated and unsaturated fats: saponification, autooxidation, hydrogenation. Oxidative and hydrolytic rancidity. Amino acids: acid-base properties, isoelectric point. Peptides and proteins: structure, properties and classification. Protein in food.


Brown, Poon: Introduzione alla Chimica Organica. Editore EDISES Napoli

Teaching methods

The course includes 56 hours of lectures, and 30 hours of exercises in classroom. During the lecture hours, students are guided to the understanding of the basic concepts and applications of Organic Chemistry, through the projection of slides accompanied by explanation. After each set of topics, classroom exercises are planned in order to allow the student to assess his or her degree of understanding of the subject. For this purpose, problems are proposed which are discussed and solved together with the students.

Assessment methods and criteria

The exam is based on a written test containing a series of problems that are proposed to the students to be solved.
Participation in the test is possible ONLY after registration through the ESSE3 system. Students not officially registered will not be admitted to take the test. There will be 8 different sessions of test per year.
The test consists of 10 exercises covering the whole program, both practical and theoretical. Each exercise is worth a maximum of 3 points regardless of the degree of difficulty, and depending on the student's response, 0, 0.5, 1, 1.5, 2, 2.5 or 3 points can be assigned. The time for the test is 3 hours.
During the test the student can withdraw, and in this case the test is not corrected and the result will be recorded in the ESSE3 system as WITHDRAWAL.
The results of the written test will be published on ESSE3 and each student will receive an email with the result.
The test is considered passed and the grade can be officially recorded if the grade of the test is equal to or higher than 18. In case of a grade lower than 18, the test will have to be repeated.
In the event of a grade equal to or greater than 18, the student has two options:
- Accept the vote received, which will then be officially recorded
- Reject the vote using the specific option in ESSE3, and repeat the exam. Attention: the refusal must be explicit, the silence-assent rule applies.

Other information

All slides used in class are provided to students at the beginning of the course, via the ELLY platform.
In the same site, the students will find all the exercises that will be discussed in the classroom exercises, as well as all the written tests of the two previous years, as a further exercise.
The lecturer talks with the students for clarifications and discussions at the end of the lessons, and is also available to provide further clarification in his office, following an e-mail appointment.