cod. 1004746

Academic year 2017/18
1° year of course - First semester
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Scienze interdisciplinari
Type of training activity
14 hours
of face-to-face activities
2 credits
hub: -
course unit

Integrated course unit module: BIOSCIENCES

Learning objectives

The module of Physica Applied to Physical Therapy is part of the Integrated Course of Biosciences. The module has been designed to
convey knowledge and understanding of basic physics principles,
providing an introductory basis for other disciplines including Physiology,
Health Physics, Radioprotection, Non-ionizing Radiations, Electromagnetic
Fields, etc.., that rely on the physical phenomenology on make frequent
use of it. The course will also provide the conceptual basis for
understanding a number of major technologies that are used with
increasing frequency. In this sense, the module also aims to develop the
students' attitude towards independent study and continuing education
on the application of physical techniques to several fields. As its final, but
perhaps most important, goal, the course has been designed to stimulate
students to become more familiar with certain common concepts, that
are not always sufficiently explained in previous studies, such as: light
and its manifestations, also in relation to the structure of the eye and its
physical defects, fundamentals of electrical, magnetic and nuclear
phenomena, the laws that govern potential and current, electromagnetic
and nuclear radiation, perturbations induced in means passed through
and aspects of detection and control.


- - -

Course unit content

The module of "Physics Applied to Physical Therapy" will deal with the fundamental
principles of electromagnetism and optics. Applications and
consequences on human body physiology and medicine will be stressed.
In particular, deeper insights will be provided into the effects of electric currents on the human body, and the use of radiations in diagnosis and therapy.

Full programme

Optics: Reflection and refraction - Total reflection and optical fiber - Optical system, focus and dioptric power - Spherical diopter - Thin lenses,
mirrors and image construction - Compound microscope - Resolution
strength - The eye as a dioptric system - Principal ametropies of the eye
and their correction using lenses - Wave theory of light - Laser light.
Electricity, magnetism and electrical current: Electrical charges and
Coulomb’s law - Electrical field - Work of the electrical field and
electrostatic potential - Overview of muscle fiber and
electrocardiogram - Gauss’s theorem and its applications - Current intensity - Overview of the
electronic structure of insulators, metallic conductors and semiconductors
- Ohm’s law - Series and parallel resistors – Electromotive force - Thermal
effect of current - Electrical conduction in liquids - Passing of current in
the human body -Thermoionic and photoelectric effects - Magnetic field
and its action on current and magnets - Electromagnetic induction - Selfinduction
– Alternating voltage and current - Impedance -
Electromagnetic waves. Radiation: Structure of the atom and nucleus -
Quantum numbers, electronic orbitals and transitions - Unstable isotopes
and alpha, beta, gamma radiation - Law of radioactive decay and half-life
- Radiation detection - Biomedical applications of radioisotopes - X-rays
(production, properties and absorption mechanisms in the matter) -
Radiological image - Overview of computerised axial tomography (CAT)
and radiofrequency (NMR) imaging techniques- Overview of radiation


Classroom notes.

Bersani, Bettati, Biagi, Capozzi, Feroci, Lepore, Mita,
Ortalli, Roberti, Viglino, Vitturi: Elementi di Fisica, Ed. Piccin Nuova
Libraria (Padova).

Scannicchio: Fisica Biomedica, Ed. EdiSES (Napoli).

Celasco: Lineamenti di Fisica Medica, Ed. E.C.I.G. (Genova)

Teaching methods

During classroom lectures, the topics contained in the program of the
module will be illustrated and commented. Emphasis will be posed on the
applications to biology and medicine of basic physics principles, with
examples of how such principles can lead to quantitative predictions on
physiological and pathological phenomena. In selected cases, the
demontration of basic physics principles will be illustrated, with the aim
to introduce the students to the practice of logical thinking and
experimental approach.

Assessment methods and criteria

The achievement of the objectives of the modules "Medical Physics" and
"Physics Applied to Physical Therapy" will be assessed through a written exam, mainly
consisting in open questions on the topics of the course. This will allow to
ascertain the knowledge and the understanding of both the theoretical
bases and their practical consequences. The written exam willpossibly include the
resolution of problems, to assess the achievement of the ability to apply
the acquired knowledge to a simulated, though realistic situation. All
parts of the written exam will be equally weighted in the final evaluation.

Other information

- - -