THEORETICAL CONDENSED MATTER PHYSICS
cod. 1010171

Academic year 2024/25
1° year of course - First semester
Professor
Sandro Marcel WIMBERGER
Academic discipline
Fisica teorica, modelli e metodi matematici (FIS/02)
Field
Teorico e dei fondamenti della fisica
Type of training activity
Characterising
78 hours
of face-to-face activities
9 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

• learning skills/communication skills: describe the fundamental concepts of quantum physics and the relevant theoretical methods

• making judgements: solve problems in advanced nonrelativistic quantum physics

• knowledge and understanding: apply the relevant theoretical methods to model concrete physical situations

Prerequisites


This course requires a knowledge of an introductory course on classical and quantum mechanics during the B.Sc. degree in physics or related fields.

Course unit content


Please refer to the extended program.

Full programme

1) Introduction – Introduzione

The chapters 2) to 4) contain the principal methods and concepts introduced in this course — I capitoli dal 2) al 4) contengono i metodi e i concetti essenziali introdotti nel corso.

2) Light-matter interactions – Interazione luce-materia
Atoms in external fields (NMR, 2-level atom in laser field) – Atomo in un campo esterno (NMR, 2 livelli + laser)
Rabi model and Rabi oscillations – Modello e oscillazioni di Rabi
Time-dependent perturbation theory – teoria di perturbazione tempo-dipendente
Recall of Fermi-Golden-Rule – Ricapitolazione della regola d’oro di Fermi

3) Symmetries in quantum mechanics – Simmetrie nella meccanica quantistica
Introduction to groups and their representations – Introduzione nella teoria dei gruppi e delle loro rappresentazioni
Wigner’s theorem and connection between symmetries and quantum mechanics — Teorema di Wigner e connesso tra simmetrie e la meccanica quantistica
Continuous symmetries (space-time translations, rotations, .) – Simmetrie continue (traslazioni spazio temporali, rotazioni, .)
Discrete symmetries (Inversion P e T, .) – Simmetrie discrete (inversione P e T, .)
Applications: selection rules, gauge transforms, crystal symmetries, Bloch theorem (discrete spatial translation symmetry), Angular momentum and spin (addition of angular momenta) — applicazioni: regole di selezione, trasformazioni di gauge, simmetrie nei cristalli, teorema di Bloch (simmetria di traslazione spaziale discreta), momento angolare e lo spin (somma di momenti angolari)

4) Identical particles – Particelle identiche
(Anti)Symmetrization – (Anti)simmetrizzazione
Permutation groups – Gruppi di permutazioni
Second quantization – La seconda quantizzazione
Nonrelativistic many-body quantum mechanics – Meccanica quantistica non relativistica a molti corpi
Evolution law – Legge di evoluzione temporale

The chapter 5) represents specific and exemplary applications of the arguments introduced above. — Il capitolo 5) contiene applicazioni specifiche ed esemplari di richiamo agli argomenti sovraesposti.

5) Applications (a selection of the following topics will be presented) - Applicazioni (verrà presentata una selezione degli argomenti in seguito)
Mean-field approximations – Approssimazioni di campo medio
Theory of molecules – Teoria delle molecole
Bose e Fermi Hubbard modells – Modello di Bose e Fermi Hubbard
Linear-response theory – Teoria di risposta lineare
Stationary scattering theory – Teoria di scattering stazionaria
Second quantization of photon field – Seconda quantizzazione del campo dei fotoni

Bibliography


General textbooks:

J. J. Sakurai & J. Napolitano, Modern Quantum Mechnics (Addison-Wesley, 2011)

F. Schwabl, Quantum Mechanics (Springer, 2007, 4th edition)

F. Schwabl, Advanced Quantum Mechanics (Springer 2008, 4th edition)

Books on special topics:

M. Chaichian, R. Hagedorn, Symmetries in Quantum Mechanics: From Angular Momentum to Supersymmetry (IOP, 1998)

D. J. Griffiths, Introduction to Quantum Mechanics (Pearson, 2014)

M. Le Bellac, Quantum Physics (CUP, 2006)

E. Onofri, C. Destri, Istituzioni di Fisica Teorica (Carocci, 1996)

P. Caldirola, R. Cirelli, G. M. Prosperi, Introduzione alla fisica teorica (UTET, 1982)

Teaching methods


Lectures and exercises; homework corrected by the lecturer and discussed during the lectures. The students are directly involved in the exciserses and their presentation. Generally, all students are expected to check on the platform Elly the available material and the indications provided by the instructor.

Assessment methods and criteria

Please refer to the Italian version for precise instructions. Homework exercises are given and corrected. Positively evaluated presentations of their solutions lead to 1 or maximally 2 points of bonus for the final grade. At the end of the course a written exam is given where no material can be used. An oral exam may be required in addition. The final grade of the written+oral exam takes into account the possibile bonus from the homework presentations.

Other information

Distribution of documents via the platform ELLY of the course.

2030 agenda goals for sustainable development

- - -