Learning objectives
1. Knowledge and understanding
Understand the fundamental properties of the electronic states of organic molecules and the transitions between them and the experimental techniques discussed within the course according to the program reported.
Remember and compare the time-resolution characteristics of the spectroscopic techniques described in the lessons and the processes that they allow to follow in real time.
Explain the meaning of the physical quantities and the general concepts related with the spectroscopic techniques
Examine physical systems to which the methodologies addressed can be applied
Understand context and basic concepts of recent literature that use time-resolution spectroscopy techniques
2. Applying knowledge and understanding
Apply the acquired knowledge to address the photophysical processes of a molecular system
Identify the appropriate techniques for the study of a particular photophysical process
Perform numerical analysis of experimental signals and derive important physical parameters for the characterization of the underlying phenomenon
Elaborate reaction patterns from experimental data
3. Communication skills
Know how to communicate ideas-problems-solutions about photophysics processes in a clear, synthetic and effective way
Know how to describe the phases of a measurement appropriately
Able to explain to the group mates and the teacher the various experimental issues faced during laboratory practice
4. making judgements
Able to analyze from a quantitative point of view relevant photophysical processes both at the theoretical and experimental level
Able to evaluate the limits and potentials of the spectroscopic techniques described during the course.
Know how to evaluate the essential elements to develop a mechanistic model that describes a molecular process
Able to evaluate critically the validity limits of the developed models, and the analogies and differences between the physical systems studied
5. Learning Skills
Link the different topics discussed in the course and those dealt with in other courses (eg Physics of Matter, Quantum Mechanics, Chemistry)
To explore the main optical spectroscopic methodologies endowed with time resolution covered in cited scientific publications
Know how to change your conceptual framework or the plan of an experimental measure in response to new inputs by developing alternative solutions and methodologies