# MEDICAL STATISTICS cod. 03848

Academic year 2012/13
1° year of course - First semester
Professor
Academic discipline
Statistica medica (MED/01)
Field
Scienze propedeutiche
Type of training activity
Basic
10 hours
of face-to-face activities
1 credits
hub: -
course unit
in - - -

## Learning objectives

Introduce the student to the logic of statistical thinking and its application to practical problems.

- - -

## Course unit content

Introduction: medical statistics and related disciplines. Logic and statistical planning. Overview of combinatorial analysis: permutations, arrangements, combinations. Applications. Overview of probability calculations: simple and compound probability, Bayes theorem. Odds. Odds ratios. Likelihood ratios. applications. Probability distributions : binomial distribution, Poisson distribution, normal and standard normal distribution. Tables and their use.
Summarising data. Units of measure. Measurements of position, order and variation. Indices of central tendency, mean median, mode. Indices of variability, variance, standard deviation, CV. Percentiles and their use.
General principles of statistical inference. Sampling distribution. Hypothesis and hypothesis testing. Type 1 and type 2 error. Power of a test and operating curve. Parametric test : Student t-test, Variance analysis with 1 and 2 classification criteria. Non-parametric test: Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Friedman test, mean test, Chi-square test, Fisher exact test.
Overview of linear regression and correlation.

## Full programme

Introduction: medical statistics and related disciplines. Logic and statistical planning. Overview of combinatorial analysis: permutations, arrangements, combinations. Applications. Overview of probability calculations: simple and compound probability, Bayes theorem.
Odds. Odds ratios. Likelihood ratios. applications.
Probability distributions : binomial distribution, Poisson distribution, normal and standard normal distribution. Tables and their use.
Summarising data. Units of measure. Measurements of position, order and variation. Indices of central tendency, mean median, mode.
Indices of variability, variance, standard deviation, CV. Percentiles and their use.
General principles of statistical inference. Sampling distribution. Hypothesis and hypothesis testing. Type 1 and type 2 error. Power of a test and operating curve.
Parametric test : Student t-test, ANOVA with 1 and 2 classification criteria.
Non-parametric test: Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Friedman test, median test, Chi-square test, Fisher exact test.
Overview of linear regression and correlation.

## Bibliography

1) Lecture notes
2) Stanton A. Glantz : Statistica per discipline Bio-mediche, ed. McGraw-Hill
3) Sidney Siegel, N. John Castellan Jr. : Statistica non parametrica, ed. McGraw-Hill
4) Internet resources and links

## Teaching methods

classroom lectures

## Assessment methods and criteria

written examination

- - -