HANDLING OF ANIMAL GENOME: TRANSGENIA, CLONING AND INDUCED PLURIPOTENT CELLS
cod. 1005420

Academic year 2015/16
1° year of course - Second semester
Professor
Stefano GROLLI
Academic discipline
Biochimica (BIO/10)
Field
Discipline biotecnologiche comuni
Type of training activity
Characterising
40 hours
of face-to-face activities
5 credits
hub: PARMA
course unit
in - - -

Integrated course unit module: BIOTECHNOLOGY OF REPRODUCTION AND STEM CELLS

Learning objectives

At the end of the course the student will be able to discuss, using an appropriate language and critically on:
Techniques for farm animal transgenesis and cloning. Biomedical applications: animals as bioreactors, animals as model for human diseases. Functional foods and animal biotechnology. Agricultural applications: modification of milk and meat composition; improvement of farm animal growth curve and resistance to diseases. Animal transgenesis and reproduction. Cloned and transgenic animals welfare. Genetically modified animals and food production.
Regenerative medicine:
-Mesenchymal stem cells (MSC): in-vivo and in-vitro biology. Application in veterinary medicine
-Induced pluripotent cells (IPS): biology and therapeutic potential
-Laboratory practice: isolation and characterization of MSC from adipose tissue.

Prerequisites

No

Course unit content

The course will be addressed to two main area of cell/animal manipulation and their implications in veterinary medicine.
The main objective of the course is the acquisition of a solid knowledge about transgenesis and cloning of farm animal. With this aim the different approaches to animal genome modification will be evaluated both from the methodological and the scientific point of view. Finally, biomedical and agricultural applications of transgenic and cloned livestock, animal welfare, and food safety and quality issues will be addressed.
In the second part of the course, the basic principles of regenerative medicine and its application in veterinary medicine will be described. In particular, the biological characteristics of mesenchymal stem cells and of induced pluripotent cells will be focussed. Furthermore, examples of their applications in veterinary medicine will be illustrated with a critical discussion of the clinical outcomes.

Full programme

The course will describe the fundamental aspects about farm animal cloning and transgenesis. In the first part of the course, the techniques applied to genome manipulation will be presented both from a scientific and technologic point of view. Some of the applications related to animal health and production will be then discussed, as well as biomedical models related to human health. Finally, these techniques and their application will be considered from the point of view of the animal welfare and of the safety of food products derived from cloned/transgenic animals. Furthermore key concepts related to stem cell biology and clinical use in veterinary medicine will be introduced.

Course description:
Farm animal transgenesis and cloning: biological background, history, techniques.
Biomedical application: animal as bioreactors; animal as models of human and mammalian diseases; genetically modified animals and xenotrasplantation.
Zootechnical application of genome transgenesis and cloning: animal growth modification; milk and body composition modification; disease resistance modification; reproductive performances modification.
Social and economic implications of genome manipulation: animal welfare; food safety issues related to genetically modified foods; functional foods.
Stem cell biology. Mesenchymal stem cells, induced pluripotent stem cells:
biology and clinical applications. Perspectives and limits.

Bibliography

The students will be given articles and the slides used by the teacher.

Teaching methods

Before each new lesson, the teacher will first summarise then check whether the previous topics have been well understood through an interactive discussion with the students.

Assessment methods and criteria

Besides the short exams described above and performed throughout the course, there will be a final oral exam during which the student wil be asked three questions on topics discussed during the course. One question will focus on the application of the techniques described during the practical lessons. Not only will be the understanding of a specific topic valued, but also the capacity of the student to trace, using an appropriate language, those links necessary to the understanding of the biological phenomenon described.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Servizio per la qualità della didattica

Manager della didattica:
Rag. Sabrina Ferrari

T. +39 0521 903109
E. servizio [didattica.dimec @unipr.it]
 

Presidente del corso di studio

Prof, Nicola Giuliani
E. nicola.giuliani@unipr.it

Delegato orientamento in uscita

Prof.ssa Sara Nicoli
E.sara.nicoli@unipr.it

Delegati Erasmus

Prof. Roberto Sala

E. roberto.sala@unipr.it

Referente assicurazione qualità

Prof.ssa Carlotta Compari
E. carlotta.compari@unipr.it

Tirocini formativi

Prof.ssa Laura Giovati

E. laura.giovati@unipr.it