Obiettivi formativi
Al fine di sviluppare le competenze di soglia richieste, allo studente si
chiede di dimostrare il raggiungimento di conoscenze sui seguenti punti:
• Conoscenza e comprensione.
o Conoscere la teoria che è alla base della meccanica dei solidi e delle
strutture.
o Comprendere ed assimilare i concetti di stato deformativo, stato
tensionale e di relazione costitutiva.
o Conoscere i comportamenti elastico, plastico, elasto-plastico e
viscoelastico dei materiali
o Conoscere le relazioni che governano le caratteristiche di sollecitazione
e la deformata (linea elastica) delle travi
o Comprendere le modalità di risposta di travi elasto-plastiche soggette a
sollecitazioni semplici.
o Comprendere il comportamento delle strutture bidimensionali
• Capacita' di applicare conoscenza e comprensione.
o Saper applicare i concetti della meccanica dei solidi e delle strutture.
STUDENTI DI INGEGNERIA GESTIONALE:
o saper determinare lo stato deformativo a partire da quello tensionale e
viceversa.
o Saper interpretare semplici programmi per il tracciamento dei
diagrammi di sollecitazione e per il calcolo della linea elastica.
o Saper descrivere lo stato tensionale e deformativo nelle sezioni di una
trave elasto-plastica sottoposta a sollecitazioni semplici
o Saper descrivere e classificare fenomeni di instabilità dell’equilibrio
o saper utilizzare le conoscenze acquisite per approfondire
autonomamente tematiche relative alla meccanica dei solidi e delle
strutture
STUDENTI DI INGEGNERIA MECCANICA:
o Saper scrivere semplici programmi per il tracciamento dei diagrammi di
sollecitazione e per il calcolo della linea elastica.
o Saper determinare lo stato tensionale e deformativo nelle sezioni di una
trave elasto-plastica sottoposta a sollecitazioni semplici
o Saper utilizzare le relazioni costitutive per materiali elastici, plastici,
elasto-plastici e viscoelastici
o Saper classificare fenomeni di instabilità dell’equilibrio e calcolare i
relativi carichi critici
o Applicare le conoscenze acquisite allo studio autonomo di problemi
particolari di meccanica dei solidi e delle strutture ed alla progettazione
di elementi
• Autonomia di giudizio
o saper analizzare le condizioni di applicabilità dei modelli strutturali
comunemente adottati per descrivere strutture reali;
o saper valutare gli ambiti di utilizzo delle teorie studiate e degli
strumenti numerici utilizzati
STUDENTI DI INGEGNERIA GESTIONALE:
o Saper valutare e comparare le soluzioni ingegneristiche di un problema
di limitata complessità
STUDENTI DI INGEGNERIA MECCANICA:
o Saper valutare e comparare autonomamente le soluzioni
ingegneristiche di un problema
o saper analizzare un problema relativo alla meccanica dei solidi e delle
strutture, scegliendo autonomamente l’approccio corretto e gli strumenti
opportuni per la sua risoluzione
• Abilità comunicative
o Saper comunicare efficacemente, nell’ambito della disciplina specifica,
in forma scritta ed orale
STUDENTI DI INGEGNERIA GESTIONALE:
o Conoscere e saper utilizzare la terminologia scientifica/tecnica specifica
dell’insegnamento
STUDENTI DI INGEGNERIA MECCANICA:
o Conoscere e saper utilizzare la terminologia scientifica/tecnica specifica
dell’insegnamento, possibilmente anche in lingua inglese
o Saper utilizzare correttamente il linguaggio matematico per la
rappresentazione degli argomenti trattati.
• Capacità di apprendere
o Capacità di catalogare, schematizzare e rielaborare le nozioni acquisite
o Capacità di collegare i diversi argomenti trattati tra loro e con le
discipline di base ed affini
o Capacità di utilizzare le conoscenze acquisite in modo autonomo
Prerequisiti
E’ fondamentale avere una conoscenza di base di analisi matematica e
algebra lineare, di nozioni fondamentali di fisica e di Scienza delle
Costruzioni
Contenuti dell'insegnamento
L’insegnamento riguarda lo studio del comportamento delle strutture e
dei loro componenti (elementi strutturali) sotto l'effetto di varie azioni o
sollecitazioni. In particolare, il Corso si propone di approfondire aspetti
accennati nell'ambito dei corsi di “Scienza delle Costruzioni” (per gli
allievi Ingegneri Meccanici) e “Progettazione e disegno di componenti
industriali – 2° modulo” (per gli allievi Ingegneri Gestionali) e di
esaminarne di nuovi. Finalità specifica del corso è dotare lo studente
degli strumenti necessari per la comprensione e l'applicazione di modelli
dell'analisi strutturale, integrandone la formazione con quegli argomenti
che non possono trovare spazio nei soli corsi caratterizzanti.
La prima parte del corso è dedicata alla Meccanica dei Solidi e
comprende quindi richiami di analisi di deformazione e tensione ed i
legami costitutivi (elasticità lineare, cenni di elasticità non lineare,
elastoplasticità e viscoelasticità). La seconda parte del corso sarà invece
dedicata alla Meccanica delle Strutture. In particolare, verranno
richiamati i concetti relativi alla risoluzione delle strutture isostatiche ed
iperstatiche, che verranno utilizzati per lo sviluppo di programmi numerici
per il tracciamento dei diagrammi delle caratteristiche di sollecitazione
interna e della deformata (linea elastica) di una trave. Segue poi lo studio
di travi in materiale elasto-plastico, soggette a sollecitazioni semplici
(sforzo normale, flessione, torsione, taglio), con particolare riguardo alle
deformazioni plastiche ed alle tensioni residue. Si affronterà poi lo studio
di strutture bidimensionali a superficie media piana, sollecitate da azioni
contenute nella superficie media (regime membranale) e ortogonali alla
superficie media (regime flessionale). Infine, si affronteranno problemi di
instabilità dell’equilibrio.
La parte finale del corso sarà dedicata allo sviluppo, all’approfondimento
e all’applicazione di diverse tematiche affrontate nel corso
dell’insegnamento.
Programma esteso
1. Legami costitutivi
1.1. Richiami di analisi della tensione e della deformazione. Cerchi di
Mohr, classificazione degli stati tensionali.
1.2. Modelli ideali di comportamento dei materiali. Elasticità lineare e non
lineare. Elastoplasticità.
1.3. Materiali non isotropi(cenni).
1.4. Viscoelasticità.
2. Studio di solidi di tipo trave in campo elasto-plastico
2.1. Sforzo normale. Deformazioni plastiche e tensioni residue.
2.2. Flessione retta. Deformazioni plastiche, tensioni residue. Relazione
momento-curvatura. Cerniere plastiche nelle travi inflesse.
2.3. Torsione. Deformazioni plastiche, tensioni residue. Relazione angolo
di torsione-momento torcente.
2.4. Taglio (cenni)
3. Strutture bidimensionali a superficie media piana
3.1. Strutture sollecitate da azioni contenute nella superficie media.Stato
piano di tensione, funzione di Airy.
3.2. Strutture sollecitate da azioni ortogonali alla superficie media.
Modello di Kirchhoff-Love.
3.3. Membrane tese (cenni)
4. Elementi di instabilità dell'equilibrio elastico.
4.1. Stabilità di elementi compressi. Carico critico Euleriano.
4.2. Stabilità di strutture ad elasticità concentrata.
4.3. Instabilità flessionali e torsionali. Instabilità locali.
5. Utilizzo di programmi numerici per la determinazione della linea
elastica
5.1. Introduzione a Matlab.
5.2. Richiami: risoluzione delle strutture isostatiche ed iperstatiche,
diagrammi di sollecitazione, relazioni tra le caratteristiche di
sollecitazione, relazione momento-curvatura, equazioni della linea
elastica
5.3. utilizzo e scrittura di programmi numerici (Matlab) per il
tracciamento dei diagrammi delle caratteristiche di sollecitazione interna
di una trave
5.4. utilizzo e scrittura di programmi numerici (Matlab) per la
determinazione della deformata (linea elastica) di una trave
Bibliografia
F. P. Beer, E. R. Johnston, J. T. DeWolf, D. F. Mazurek, "Meccanica dei
solidi - Elementi di scienza delle costruzioni", MCGraw-Hill, 4° edizione.
Dispense del corso.
Altri testi consigliati:
• S. H. Crandall, N. C. Dahl, T. J. Lardner, “Introduction to the Mechanics
of Solids”, McGraw-Hill, 2° Edizione (in inglese).
• O. Belluzzi, “Scienza delle Costruzioni”, Zanichelli.
Metodi didattici
Le attività si svolgeranno in telepresenza attraverso l’utilizzo delle piattaforme Teams ed Elly. In particolare, saranno
realizzate lezioni in modalità sia sincrona (via Teams) che asincrona (caricate sulla pagina Elly del corso). Durante le
lezioni in modalità sincrona (diretta), si alterneranno momenti prevalentemente frontali a momenti interattivi con gli
studenti. Per promuovere la partecipazione attiva al corso, verranno proposte diverse attività sia individuali che a
piccolo gruppo, attraverso l’utilizzo delle risorse presenti in Elly.
La docente sarà disponibile su appuntamento per ricevimenti in presenza.
Nella seconda parte del corso, agli studenti verranno proposti
approfondimenti su tematiche relative al corso, esercizi di progettazione
basati sui contenuti del corso, studio di particolari problemi di meccanica
dei solidi e delle strutture, con particolare riferimento ad applicazioni in
ambito meccanico ed industriale, da svolgersi singolarmente o in piccoli
gruppi (di massimo 3 studenti). Tali argomenti potranno essere scelti
dagli studenti tra quelli proposti dalla docente, oppure proposti dagli
studenti stessi. La docente avrà cura di guidare ed indirizzare gli studenti
in questa fase. Gli elaborati prodotti verranno discussi in sede d’esame.
La docente è disponibile per chiarimenti durante l’orario di ricevimento,
oppure su appuntamento.
Modalità verifica apprendimento
La verifica dell’apprendimento sarà effettuata tramite
• una prova scritta, della durata di 2 ore, in cui verrà richiesto allo
studente di risolvere esercizi delle stesse tipologie viste in aula. Durante
la prova scritta lo studente potrà utilizzare formulario e calcolatrice, oltre
a strumenti per la scrittura e il disegno. La valutazione avviene su scala
0-30 e sono ammessi all’orale i candidati che conseguono almeno 18/30.
Il voto della prova scritta viene comunicato tramite pubblicazione su Elly.
• una prova orale consistente nell’esposizione e nella discussione critica
dell’elaborato prodotto dallo studente, relativo ad approfondimenti su
tematiche relative al corso, esercizi di progettazione basati sui contenuti
del corso, studio di particolari problemi di meccanica dei solidi e delle
strutture. Durante la prova orale verrà verificato che lo studente conosca
e abbia utilizzato correttamente le conoscenze relative alla meccanica dei
solidi e delle strutture, applicate ad un problema scelto autonomamente,
e sia in grado di comunicare procedimenti e risultati ottenuti utilizzando
la terminologia specifica della disciplina. Nel caso di lavori svolti in
gruppo, è necessario che ogni membro del gruppo padroneggi tutto il
lavoro, nella sua completezza ed espliciti le parti che ha svolto
personalmente. La valutazione avviene su scala 0-30 e il voto viene
comunicato immediatamente al termine della prova stessa.
Il voto finale risulterà dalla media aritmetica dei due risultati. La lode
viene assegnata nel caso del raggiungimento del massimo punteggio su
entrambe le prove, a cui si aggiunga la padronanza del lessico
disciplinare.
Altre informazioni
- - -