MATEMATICA
cod. 1005973

Anno accademico 2019/20
1° anno di corso - Primo semestre
Docente
Alessandra LUNARDI
Settore scientifico disciplinare
Analisi matematica (MAT/05)
Ambito
Discipline matematiche
Tipologia attività formativa
Base
72 ore
di attività frontali
9 crediti
sede: PARMA
insegnamento
in ITALIANO

Obiettivi formativi

Conoscenze e capacità di comprendere: Lo studente dovrà acquisire un’approfondita conoscenza della struttura del ragionamento matematico in generale e nell’ambito degli argomenti trattati nelle lezioni. Lo studente dovrà acquisire la padronanza degli strumenti di calcolo della matematica di base e degli altri argomenti trattati nelle lezioni.

Capacità di applicare conoscenza e comprensione: Lo studente dovrà apprendere come applicare le conoscenze acquisite: per analizzare e comprendere risultati e metodologie pertinenti agli argomenti trattati nelle lezioni anche quando non identici a quelli già conosciuti ma chiaramente correlati ad essi; per risolvere problemi di moderata difficoltà pertinenti agli argomenti trattati nelle lezioni; per formulare problemi pertinenti agli argomenti trattati nelle lezioni in una chiara e corretta forma matematica al fine di facilitare una loro analisi e risoluzione.

Autonomia di giudizio: Lo studente dovrà essere in grado di costruire e sviluppare argomentazioni logiche pertinenti agli argomenti trattati nelle lezioni, con una chiara identificazione di assunti e conclusioni, e delle procedure logico—deduttive applicate per passare dai primi ai secondi.

Capacità comunicative: Lo studente dovrà acquisire il lessico specifico della matematica di base e degli altri argomenti trattati nelle lezioni e la capacità di lavorare su tali argomenti sia in autonomia che in gruppo, nonché la capacità di inserirsi facilmente in ambienti di studio che si occupano di tali argomenti. Al termine del corso, lo studente dovrà essere in grado di comunicare problemi, idee e soluzioni riguardanti gli argomenti trattati nelle lezioni sia ad un pubblico specializzato che ad un pubblico non specializzato, sia in forma scritta che orale.

Capacità di apprendimento: Lo studente dovrà essere in grado di: proseguire nello studio degli aspetti più approfonditi degli argomenti trattati nel corso e di altre discipline di tipo matematico o più generalmente scientifico, con un alto grado di autonomia e con mentalità flessibile; di recuperare con facilità informazioni dalla letteratura di settore; di acquisire nuove conoscenze nell'ambito degli argomenti trattati nel corso e di altre discipline di tipo matematico o più generalmente scientifico mediante la consultazione autonoma di testi specialistici, riviste scientifiche o divulgative, anche riguardo ad argomenti al di fuori di quelli trattati strettamente a lezione, al fine di intraprendere percorsi di formazione successivi.

Prerequisiti

Nessuna propedeuticità obbligatoria.

Contenuti dell'insegnamento

Il corso si propone di fornire allo studente le nozioni fondamentali, i principali risultati e le più comuni metodologie di calcolo nell’ambito della matematica di base, dell’algebra lineare, della teoria delle matrici, della geometria analitica, della teoria delle funzioni reali di una variabile reale, con particolare riguardo agli aspetti analitici e logico—deduttivi dei contenuti trattati.

Programma esteso

Insiemi: appartenenza e sottoinsiemi. Operazioni con insiemi: unione, intersezione, differenza, complementare. Insiemi dati per elencazione, per proprietà caratteristica. Diagrammi di Eulero–Venn. Connettivi e quantificatori. Prodotto cartesiano di due o piú insiemi. Applicazioni e funzioni fra insiemi. Dominio e campo di definizione, Codominio e immagine. Immagine e controimmagine di un elemento e di un insieme. Iniettività, surgettività, bigettività. Composizione fra applicazioni. Funzione inversa.
Insiemi numerici (N, Z, Q, R) e loro proprietà principali. Operazioni e loro proprieta`: proprietà commutativa, associativa e distributiva. Opposto e reciproco. Elementi neutri. Valore assoluto. Ordinamento totale degli insiemi N, Z, Q, R. Equazioni e disequazioni. Proprietà dei numeri reali: la completezza. Estremo superiore, estremo inferiore, massimo e minimo. Intervalli, dischi e intorni.
Polinomi. Operazioni sui polinomi, potenze. Radici di polinomi di primo e secondo grado. Equazioni e disequazioni polinomiali e col valore assoluto, razionali e irrazionali.
Numeri reali e geometria della retta. Geometria del piano cartesiano. Distanza fra due punti del piano cartesiano. Rappresentazione di rette, di circonferenze e di coniche (forma canonica). Parallelismo e perpedicolarità di due rette. Distanza di un punto da una retta. Intersezione e tangenza fra rette e coniche. Vertici e fuochi e asintoti di coniche.
Sistemi di equazioni lineari. Metodi di risoluzione. Metodo di Cramer e metodo di Gauss. Matrici quadrate, rettangolari e vettori riga o colonna. Operazioni tra matrici e vettori. Determinante e rango di una matrice. Teorema di Rouche'-Capelli per sistemi lineari.
Grafici delle funzioni elementari. Funzione identica, costanti, lineari e affini, potenze, valore assoluto, segno. Funzioni polinomiali. Esponenziale e logaritmo. Proprietà delle potenze. La funzione logaritmo come inversa dell'esponenziale. Funzioni goniometriche. Formule di addizione, duplicazione, bisezione. Inverse delle funzioni circolari. Interpretazione grafica di iniettività e surgettività, della composizione di funzioni e della funzione inversa. Funzioni monotòne, pari, dispari. Inversa di una funzione monotòna. Traslazioni e dilatazioni di grafici di funzioni. Equazioni e disequazioni con le funzioni elementari.
Derivato del campo di definizione di una funzione. Definizione di limite in un punto del derivato. Funzioni continue in un punto, in un insieme. Unicità del limite. Teorema della permanenza del segno. Teoremi di degli zeri e di Weierstrass. Forme indeterminate e limiti notevoli.
Rapporto incrementale, derivata in un punto. Interpretazione geometrica della derivata. Relazione fra derivabilità e continuità. Funzione derivata. Derivata di somma, prodotto, rapporto e composizione di due funzioni. Derivate delle funzioni elementari. Teoremi sulle derivate. Segno della derivata e monotonia. Punti di massimo e minimo. Concavità e convessità. Derivata seconda e punti di flesso. Teorema di de l'Hôpital e applicazione ai limiti.
Aree e misura. Il problema inverso della derivazione. Integrale di Cauchy per funzioni di una variabile reale. Condizioni per l'integrabilità. Integrabilità delle funzioni continue. Funzione integrale. Proprietà: additività e monotonia. Media di una funzione continua. Insieme delle primitive di una funzione continua. Relazione fra primitive, funzione integrale e aree. Il Teorema Fondamentale del Calcolo Integrale. Metodi di integrazione: decomposizione in somma, sostituzione, parti.

Bibliografia

Bigatti A.M., Robbiano L. – Matematica di Base – Casa Editrice Ambrosiana

Languasco A. - Analisi Matematica 1. Teoria ed esercizi - Hoepli Editrice

Bigatti A.M., Tamone G. - Matematica di Base. Esercizi Svolti, Testi d'Esame, Richiami di Teoria - Soc. Ed. Esculapio

Vengono forniti settimanalmente fogli di esercizi proposti in formato elettronico.

Metodi didattici

Lezioni teoriche in aula.
Esercitazioni in aula con svolgimento pubblico degli esercizi proposti settimanalmente. Incontri individuali di chiarimento a richiesta dello studente.

Modalità verifica apprendimento

Esame scritto finale distinto in un questionario preliminare a risposta chiusa atto a provare la conoscenza e la capacità di comprensione teorica ed applicata degli argomenti svolti (50' per 10 domande) e un questionario aperto a risposta numerica e testuale atto a valutare l'autonomia di giudizio e l'abilità comunicativa (90' per 2 esercizi). L’accesso alla seconda parte è vincolato al superamento della prima. La valutazione è in trentesimi (max 14/30 per la prima prova, max 18/30 per la seconda prova. Un voto totale maggiore di 30 dà diritto alla lode). Sono ammesse in aula calcolatrici tascabili non grafiche e un foglio protocollo manoscritto con le formule ritenute utili. L'elaborato e la sua correzione sono consultabili dallo studente, previo accordo con il docente, fino alla data dell'appello successivo.

Altre informazioni

I metodi didattici, ed in particolare la metodologia di esercitazione, sono focalizzati a sviluppare nello studente l'autonomia di giudizio nel verificare la propria capacita` di comprensione dei contenuti del corso, il proprio livello di conoscenza teorica e applicata e le sue capacita` comunicative nel mostrare quanto appreso.