Obiettivi formativi
a. Conoscenza e capacità di comprensione (knowledge and understanding)
Il corso si propone di illustrare i metodi statistici per il trattamento delle
informazioni d’interesse aziendale, considerando contemporaneamente
più variabili, ed in particolare quelle di tipo quantitativo. I dati possono
essere di fonte interna all’azienda, come ad esempio quelli riguardanti le
vendite dei beni o servizi prodotti, oppure possono essere ottenuti
mediante indagini campionarie (ricerche di mercato o siti web). L’obiettivo
dell’analisi dei dati multidimensionali è quello di fornire un supporto
conoscitivo razionale per le decisioni.
Si consiglia agli studenti di seguire il corso di Statistica per la digital economy solo dopo aver sostenuto gli esami di Statistica, il cui
programma è propedeutico a quello del presente insegnamento.
Le competenze insegnate nel corso comprendono sia solidi aspetti metodologici, essenziali per la comprensione delle tecniche e per l’interpretazione dei risultati, sia un impiego dell’approccio learning by doing. La partecipazione alle attività d'aula e lo svolgimento di esercitazioni in proprio accrescono nello studente la capacità di elaborare autonomamente dati rilevanti per la soluzione di problemi di marketing.
b. Capacità di applicare conoscenza e comprensione (applying knowledge and understanding):
Alla fine del corso, lo studente sarà in grado di applicare autonomamente le tecniche statistiche sopra indicate a problemi aziendali, attraverso l’impiego del software MATLAB . Lo studente avrà pertanto sviluppato competenze di abilità analitica e di problem solving attraverso l’impiego di metodologie statistiche e dei corrispondenti strumenti informatici.
c. Autonomia di giudizio (making judgements):
Alla fine del corso, lo studente sarà in grado di svolgere in autonomia analisi quantitative dei dati aziendali. Inoltre, lo studente sarà in grado di interpretare correttamente i risultati di tali analisi, anche quando effettuate da altri. Attraverso lo studio dei contenuti del corso, lo studente matura pertanto una buona autonomia di giudizio e la capacità di rielaborare le conoscenze quantitative acquisite al fine di ottenere informazioni di business.
d. Abilità comunicative (communication skills):
Alla fine del corso, lo studente sarà in grado di interloquire con tutte le componenti aziendali, sia di vertice che di base, fornendo sintesi quantitative delle informazioni aziendali e contribuendo con le proprie analisi allo sviluppo delle decisioni aziendali.
e. Capacità di apprendere (learning skills)
Il corso è congegnato in modo tale da consentire allo studente di acquisire i metodi propri dell'analisi dei dati aziendali e della programmazione
Prerequisiti
Conoscenza di base di matematica e statistica
Contenuti dell'insegnamento
L’analisi dei dati nella digital economy: il data warehouse ed il data mining come
supporto alle decisioni.
Presentazione e classificazione delle informazioni rilevate: la matrice dei
dati, le relazioni tra le variabili, i trattamenti preliminari dei dati: valori
mancanti e valori anomali.
Introduzione all’uso di MATLAB per le analisi statistiche e alla programmazione.
Analisi esplorative e visualizzazione dei dati: rappresentazioni grafiche di
più variabili. Il problema della riduzione delle dimensioni con riferimento alle variabili:
l’analisi delle componenti principali. I metodi statistici per la segmentazione del mercato: misure di distanza
tra individui o oggetti, formazione di gruppi omogenei con metodi moderni di classificazione.
Applicazioni a casi reali con l’impiego di
MATLAB. Introduzione al machine learning e alla sentiment analysis.
Programma esteso
Il corso si propone di illustrare i metodi statistici per il trattamento delle
informazioni d’interesse aziendale, considerando contemporaneamente
più variabili, ed in particolare quelle di tipo quantitativo. I dati possono
essere di fonte interna all’azienda, come ad esempio quelli riguardanti le
vendite dei beni o servizi prodotti, oppure possono essere ottenuti
mediante indagini campionarie (ricerche di mercato). L’obiettivo
dell’analisi dei dati multidimensionali è quello di fornire un supporto
conoscitivo razionale per le decisioni.
Si consiglia agli studenti di seguire il corso di Statistica per la digital economy solo dopo aver sostenuto l'esame di Statistica di base, il cui
programma è propedeutico a quello del presente insegnamento.
PROGRAMMA
L’analisi dei dati in azienda: il data warehouse ed il data mining come
supporto alle decisioni.
Presentazione e classificazione delle informazioni rilevate: la matrice dei
dati, le relazioni tra le variabili, i trattamenti preliminari dei dati: valori
mancanti e valori anomali.
Introduzione all’uso del software MATLAB per le analisi statistiche ed alla programmazione.
Analisi esplorative e visualizzazione dei dati: rappresentazioni grafiche di
più variabili.
Il problema della riduzione delle dimensioni con riferimento alle variabili:
l’analisi delle componenti principali. Applicazioni a problemi di marketing
con l’impiego di MATLAB: il posizionamento d’un prodotto.
I metodi statistici per la segmentazione del mercato: misure di distanza
tra individui o oggetti, formazione di gruppi omogenei con metodi
di cluster analysis. Applicazioni a casi reali con l’impiego di
MATLAB: i segmenti del mercato d’un prodotto, la classificazione della
clientela. Sentiment analysis.
Bibliografia
Materiale scaricabile dal sito web http://www.riani.it/SDE
Metodi didattici
Link per partecipare alle lezioni in streaming (data di inizio 16/09/2020)
https://teams.microsoft.com/l/team/19:aea8641ef4c749d08c65b5bb52edfa5a@thread.tacv2/conversations?groupId=3229a654-95ec-4290-8ac6-affa649e2bd6&tenantId=bb064bc5-b7a8-41ec-babe-d7beb3faeb1c
Lezioni in streaming svolte anche con l’ausilio del personal computer per
l’illustrazione del software statistico.
Materiali didattici integrativi (applicazioni con l’impiego di MATLAB, temi
d’esame, ecc.) sono reperibili nel sito WEB del docente
Modalità verifica apprendimento
Prova al computer.
Gli studenti devono consegnare un file in formato .m oppure in formato .mlx. Il nome del file di consegna deve avere il seguente formato cognome_nome_numeromatricola.m. Gli studenti che hanno accenti nel cognome e/o nel nome devono ometterli nel nome del file.
La prova al computer consiste in una serie di quesiti a risposta aperta, ciascuno dei quali ha uguale peso nella valutazione.
In particolare:
* Le conoscenze e la capacità di comprensione sono accertate con domande sulle metodologie.
* Le capacità di applicare le conoscenze sono accertate con domande di discussione e di interpretazione di analisi concrete .
* L’autonomia di giudizio e la capacita di apprendimento sono accertate con domande sulle conclusioni ricavabili dalle analisi svolte .
* Le capacità di comunicare con linguaggio tecnico appropriato sono accertate attraverso l’utilizzo appropriato dei termini tecnici nelle risposte
e attraverso la richiesta di chiarimento del loro significato.
Ulteriori dettagli sulla prova sono disponibili sul sito http://www.riani.it/SDE
La prova è valutata con scala 0-30.
La lode verrà assegnata a quegli studenti particolarmente meritevoli che, oltre ad avere rispettato i requisiti necessari per ottenere la valutazione piena, nello svolgimento della prova abbiano complessivamente dimostrato un’apprezzabile conoscenza sistematica dell’argomento, un’ottima capacità di applicare le conoscenze acquisite allo specifico problema in oggetto, una rilevante autonomia di giudizio, nonché una cura particolare nella stesura formale dell’elaborato.
Durante l'esame è possibile consultare appunti ma non è ammesso utilizzare il telefono cellulare e/o collegamenti internet. I risultati sono pubblicati sulla piattaforma ESSE3 entro 10 giorni dalla durata della prova.
L'esame si svolgerà on line tramite la piattaforma Microsoft teams. I link per inserire i documenti on line e per accedere alla prova sono disponibili nella pagina web ufficiale del corso http://www.riani.it/SDE
Altre informazioni
Informazioni addizionali sul corso e sui materiali didattici aggiuntivi possono essere reperiti dal sito web del docente http://www.riani.it/SDE
Obiettivi agenda 2030 per lo sviluppo sostenibile
- - -