Obiettivi formativi
Il modulo of Fisica Applicata si inserisce nel Corso Integrato di Fisica Applicata e Generale. Il modulo ha l’obiettivo di consentire allo studente di conoscere e di comprendere gli elementi di base di fisica sanitaria e ambientale inerenti alle radiazioni ionizzanti e alle interazioni di queste ultime con la materia, allo scopo di consentire allo studente capacità di utilizzare la conoscenza e la comprensione acquisita durante l’uso quotidiano dei machine per radiodiagnostica e radioterapia.Risultato questo ottenuto anche con la comprensione delle molte applicazioni delle radiazioni ionizzanti in campo terapeutico e diagnostico sia in ambito biomedico che industriale.
RISULTATI DELL’APPRENDIMENTO
Lo studente al termine del corso, utilizzando le conoscenze di fisica e matematica già acquisite in precedenza, dovrà dimostrare conoscenze e capacità di comprensione circa:
- I diversi tipi di radiazioni ionizzanti e la loro produzione.
- Le modalità di interazione di fotoni, particelle cariche e neutroni con la materia.
- Effetti delle interazioni della radiazioni X, γ , α, β e neutroni con la materia. Applicazioni diagnostiche e terapeutiche
Lo studente inoltre, applicando la conoscenza e la comprensione acquisite, dovrà essere in grado, anche collaborando con altri professionisti, di utilizzare le metodologie e la strumentazione per la diagnosi e la terapia basate sull’uso di radiazioni ionizzanti
Prerequisiti
- - -
Contenuti dell'insegnamento
Le prime lezioni riguardano la definizione di radiazione ionizzante con particolare riferimento alla produzione di raggi X e alla produzione delle radiazioni emesse dal decadimento radioattivo.
La seconda parte del corso è rivolta alla trattazione dell’interazione delle radiazioni ionizzanti con la materia. In particolare saranno trattate l’interazione di fotoni X e gamma con la materia e delle particelle cariche pesanti, leggere e dei neutroni con la materia. La terza parte del corso tratta le applicazioni con particolare riferimento a diagnostica X con radioisotopi, sia in campo biomedico che industriale e radioterapia con LINAC, adrotereapia, terapia Neutronica in ambito sanitario.
Programma esteso
• Radiazioni ionizzanti: produzione di raggi X
• Radiazioni ionizzanti: isotopi radioattivi, radiazioni α, β, γ (esempi e utilizzo)
• Interazione tra fotoni ad alta energia e materia: Collisione elastica, Effetto fotoelettrico, Effetto Compton, Formazione di Coppie, attivazione.
• Perdita di energia nella materia
• Raggi X: radioterapia, radiodiagnostica, TAC
• Isotopi radioattivi: radiodiagnostica SPECT, PET
• Interazione tra particelle cariche pesanti e materia
• Picco di Bragg, utilizzo in radioterapia
• Interazione tra particelle cariche leggere (elettroni) e materia, utilizzo in radioterapia
• Interazione tra neutroni e materia, terapia neutronica
Bibliografia
Dispense delle Lezioni
Joseph Magill , Jean Galy: Radioactivity Radionuclides Radiation, Springer Ed.
Metodi didattici
Gli obiettivi del corso saranno per lo più raggiunti con lezioni frontali, affiancate da esercitazioni che vedranno il coinvolgimento degli studenti, attraverso l’utilizzo anche di fogli elettronici e di applet.
Modalità verifica apprendimento
L’accertamento del raggiungimento degli obiettivi previsti dal corso prevede un esame orale o scritto. Mediante domande aperte riguardanti i contenuti del corso verrà accertato se lo studente ha raggiunto l’obiettivo della conoscenza e della comprensione dei contenuti. Mediante domande riguardanti le applicazioni in ambito sanitario e industriale verrà accertato se lo studente ha raggiunto l’obiettivo di applicare le conoscenze acquisite.
Altre informazioni
- - -
Obiettivi agenda 2030 per lo sviluppo sostenibile
- - -