PRINCIPLES AND TECHNIQUES OF ANALYSIS OF NEURAL SIGNALS
cod. 1011747

Academic year 2024/25
2° year of course - Second semester
Professor
Davide ALBERTINI
Academic discipline
Psicobiologia e psicologia fisiologica (M-PSI/02)
Field
A scelta dello studente
Type of training activity
Student's choice
48 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

1. Knowledge and understanding of concepts. Students should know and understand the theoretical principles and basic mathematical tools that recur daily in neural data analysis.
2. Autonomy of application of concepts. Students should be able to independently apply the acquired theoretical and technical knowledge to the analysis of real data in MATLAB or other language of choice.
3. Problem Analysis. Students should be able to identify, for the specific experimental question, which experimental and analysis techniques are most suitable and efficient to answer it.
4. Communication skills. Students should master the ability to present and discuss orally some analysis techniques applied on experimental data.

Prerequisites

Basic knowledge of neurophysiology and elements of statistics.

Course unit content

The course aims to provide students with basic skills in neural data analysis. Basic concepts of statistics, linear algebra, signal analysis, encoding/decoding will be covered, supported by continuous application examples on different types of neural data (single neuron, LFP, EEG, ...). The student will be guided in mastering the mathematical principles underlying data analysis with examples in MATLAB, and the application of these principles to analyze experimental data.

Full programme

Introduction of elements of linear algebra, matrix calculus, vector spaces. Brief review of basic statistical concepts and mathematical analysis. Signal analysis: signal-to-noise ratio, Fourier transform, filters, wavelets, spectrograms. Analysis of neuronal spike trains, population analysis, neural state space. Dimension reduction techniques, clustering. Encoding and decoding models, classification and regression. Hints of neural networks.

Bibliography

1. Case Studies in Neural Data Analysis. A Guide for the Practicing Neuroscientist. The MIT Press, 2016.
2. MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB. 2nd Edition, Academic Press, 2014.

Teaching methods

The various topics will be covered mainly through classroom lectures (writing small portions of code requires the use of a laptop). In addition, students will be offered to perform analysis of a neural dataset on a topic of their choice in order to familiarize themselves with the analysis techniques covered in class. The teacher is available outside of class time to discuss any critical issues.

Assessment methods and criteria

The final examination consists of a two-part oral test. In the first part, the student will present the results of the analysis on the chosen dataset. This will be followed by a discussion of the results presented, extended to touch on key concepts covered in the course.

Other information

2030 agenda goals for sustainable development

Contacts

Toll-free number

800 904 084

Segreteria studenti

E. [email segreteria @unipr] (modificare link a email)
T. +39 0521 000000

Servizio per la qualità della didattica

Manager della didattica:
[titolo] [nome] [cognome]

T. +39 0521 000000
E. servizio [email @unipr] (modificare link a email)
E. del manager [email @unipr] (modificare link a email)

Presidente del corso di studio

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegato orientamento in ingresso

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegato orientamento in uscita

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Docenti tutor

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Delegati Erasmus

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)
[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Referente assicurazione qualità

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)

Tirocini formativi

E. [email @unipr] (modificare link a email)

Studenti tutor

[titolo] [nome] [cognome]
E. [email @unipr] (modificare link a email)