Learning objectives
Basic knowledge of Analytic Number Theory
Prerequisites
Basic calculus, basic complex analysis
Course unit content
Distribution of prime numbers: Chebyshev's theorems, Mertens's formulas, Selberg's formulas.
Elementary arithmetical functions: Multiplicative and totally multiplicative functions, Dirichlet product and the hyperbola method.
Sieve Methods: Sketch of Brun's combinatorial sieve and some applications.
The large sieve and its applications.
The Riemann zeta function and some properties, sketch of the analytic proof of the Prime Number Theorem.
Goldbach's problem: additive problems and the circle method.
Bibliography
T. M. APOSTOL, Introduction to Analytic Number Theory, Springer, Berlino, 1975.
K. CHANDRASEKHARAN, Introduction to Analytic Number Theory, Springer, Berlino, 1968.
H. DAVENPORT, Multiplicative Number Theory, terza edizione, Springer, Berlino, 2001.
H. M. EDWARDS, Riemann's Zeta Function, Academic Press, 1974. Ristampa Dover, 2001.
G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, quinta edizione, Oxford Science Publications, Oxford, 1979.
L. K. HUA, Introduction to Number Theory, Springer, Berlino, 1982.
E. LANDAU, Elementary Number Theory, Chelsea, New York, 1960.
H. L. MONTGOMERY & R. C. VAUGHAN, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2006.
Assessment methods and criteria
A lecture on a topic chosen by the student