STATISTICS FOR EXPERIMENTAL AND TECHNOLOGICAL RESEARCH
cod. 15420

Academic year 2020/21
1° year of course -
Professor
Giuseppe PEDRAZZI
Academic discipline
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Field
Scienze propedeutiche
Type of training activity
Characterising
24 hours
of face-to-face activities
3 credits
hub: -
course unit
in ITALIAN

Learning objectives

The module of Medical Statistics is designed to introduce the student to the basics of statistical thinking and its application in practice. The topics are geared to concrete problems of analysis and research and deal in particular with situations and cases drawn from the medical literature.
Starting from the multitude of information from which we are faced daily, the course aims to give students the statistical tools needed to describe and analyze the data, extract useful information and make informed decisions. Special emphasis will be put on statistical reasoning, interpretation and decision-making process. We will insist more on the conceptual understanding that the mechanical calculation, especially in light of the wide range of software available for analysis. The theory will be made explicit by means of practical exercises and teaching cases, therefore, the ultimate goal of the course is that the student learn "how to do" as well as knowing.

Prerequisites

- - -

Course unit content

The first part of the course will introduce the basics of statistical planning and experimental design.
Principles of probability and combinatorial analysis needed later in the course will be introduced, as well as the major probability distributions. This includes the binomial distribution, the Poisson distribution, the Normal and standard Normal distribution.

The second part of the course will address the methods of descriptive statistics. It will be shown how to recognize the type of data and how to summarize them in appropriate indicators.
The student will learn how to calculate measures of location (mean, median, mode), variability (variance, standard deviation), the coefficient of variation (CV), quantiles and their use.
Overview of special charts (mosaic plot, box-percentile plot, parallel-violin plot, etc).

In the final part of the course the general principles of statistical inference will be introduced.
The student will face the concepts of sampling distribution, type I and II error, power of a statistical test and operating curve.
The following methods will then be explained:
parametric tests - Student's t test, ANOVA 1 and 2 classification criteria.
non-parametric tests: - Wilcoxon test, Mann-Whitney, Kruskal-Wallis, Friedman test, median test, chi-square test, Fisher's exact test.
Overview of multivariate statistics.

Full programme

Introduction: medical statistics and related disciplines. Logic and statistical planning. Overview of combinatorial analysis: permutations, arrangements, combinations. Applications. Overview of probability calculations: simple and compound probability, Bayes theorem.
Odds. Odds ratios. Likelihood ratios. applications.
Probability distributions : binomial distribution, Poisson distribution, normal and standard normal distribution. Tables and their use.
Summarising data. Units of measure. Measurements of position, order and variation. Indices of central tendency, mean median, mode.
Indices of variability, variance, standard deviation, CV. Percentiles and their use.
General principles of statistical inference. Sampling distribution. Hypothesis and hypothesis testing. Type 1 and type 2 error. Power of a test and operating curve.
Power analysis and sample size determination.
Parametric test : Student t-test, ANOVA with 1 and 2 classification criteria.
Non-parametric test: Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Friedman test, median test, Chi-square test, Fisher exact test.
Linear regression and correlation. Multiple regression. Logistic regression.

Computer exercises with the software "R" and Epi Info.

Bibliography

lecture notes

W.W. Daniel : Biostatistica – Ed. Edises

M.M Triola, M.F. Triola : Fondamenti di Statistica, Ed. Pearson

A. Field. J. Miles, Z. Field : Discovering Statistics Using R, Ed. SAGE

Michael J. Crawley "The R book" , Ed. Wiley

Teaching methods

During the lectures, the topics contained in the program of the
module will be illustrated and commented.
At the end of each topic classroom exercises explaining the application of the theory in practice will follow. The formal procedure and the step by step execution of the necessary calculations will be described. Both manual solution and computer calculation will be shown.
The students will be particularly encouraged to use the open source statistical system "R" and the free software package Epi Info.

The course will be held through lectures to Students either in the classroom (“in presenza”) or in synchronous-streaming (“in telepresenza”) on the Teams platform. Therefore, the opportunity of Student/Teacher interaction will be preserved both face to face and remotely, by the simultaneous use of the Teams platform.
Lectures will be supported by slide presentations, which will be available to students on the Elly platform (https://elly.medicina.unipr.it).

Assessment methods and criteria

The achievement of the course aims is proofed by a written examination. Using open-ended questions and the solution of problems about the contents of the course it will be determined whether the student has achieved the goal of knowledge and understanding of content about specific biomedical applications. 

If due to the persistence of the health emergency it is necessary to adopt the remote modality for the exams, we will proceed with a
written test conducted remotely (via Teams and Elly) in the same way as the classroom test. The candidate will remain connected with microphone and video camera turned on and will carry out the test under the control of the commission.
Consultation of the didactic material will be allowed.

Students with SLD / BSE must first contact Le Eli-che: support for students with disabilities, D.S.A., B.E.S. (https://sea.unipr.it/it/servizi/le-eli-che-supporto-studenti-con-disabilita-dsa-bes

Other information

- - -

2030 agenda goals for sustainable development

- - -