## Learning objectives

The student should acquire a good knowledge about archimedean and non archimedean absolute values and valuations and about the completion of fields with respect to such absolute values. The students should be able to apply such knowledge to the investigation of the structure and main properties of complete fields with particular emphasis on the p-adic fields.

The student should acquire a good knowledge about Galois extensions, Galois groups and the fundamental theorem of Galois theory (in the infinite case as well). The student should be able to apply such knowledge to the investigation of various extensions (radical extensions, constructible, cyclic, abelian, cyclotomic,...).

After the lectures the student should be able to present the topics of the course with clarity and precision and with an appropriate specific scientific language and to improve his/her knowledge in local fields and Galois theory by consulting the existing literature on the subject.

## Prerequisites

A basic course in Algebra (groups, rings and fields).

During the course we shall present/introduce (if/when necessary) some basic results of group theory (Cauchy's theorem, Sylow's theorem, structure theorem for finitely generated abelian groups,...) and commutative algebra (algebraic extensions, localization, inverse limits,...).

## Course unit content

The course will deal mainly with the following topics:

1. Absolute values and valuations, completion of a field, p-adic fields Q_p .

2. Algebraic closure of a field, separability and inseparability, normal extensions.

3. Galois theory (finite and infinite extensions), examples and applications.

## Full programme

Absolute values and valuations (archimedean and not archimedean), topologies induced by absolute values and equivalent absolute values, valuations over the rationals (Ostrowski's theorem). Completions, existence and uniqueness of the completion with respect to an absolute value, valuation rings. p-adic fields Q_p , Hensel's Lemma and applications: square roots and roots of unity in Q_p . Structure of the multiplicative group of Q_p , quadratic extensions of Q_p .

Algebraic closure of a field: existence and uniqueness, embeddings of a field in its algebraic closure, extensions of embeddings. Separability and inseparability, separable extensions. Normal extensions, splitting fields.

Galois group of a field extension, Galois groups of a polynomial as a subgroup of the permutation group of its roots, symmetric functions and extensions with Galois group S_n . Fundamental theorem of Galois theory, examples: finite fields, cyclic extensions (Kummer theory and Artin-Schreier extensions), cyclotomic extensions.

Applications: ruler-and-compass constructions, constructible regular polygons (Gauss), radical extensions, polynomials solvable by radicals (Abel's theorem), fundamental theorem of algebra.

Infinite Galois theory: Krull's topology, profinite groups as inverse limits of finite groups, Galois groups of infinite extensions, fundamental theorem of infinite Galois theory.

Inverse problem of Galois theory: constructions of abelian extensions.

During the course we shall present/introduce (if/when necessary) some basic results of group theory (Cauchy's theorem, Sylow's theorem, structure theorem for finitely generated abelian groups,...) and commutative algebra (algebraic extensions, localization, inverse limits,...).

## Bibliography

F. Q. Gouvea "p-adic numbers" Springer Universitext

J. Neukirch "Algebraic Number Theory" Springer Grund. der Math. Wissen. 322

I. Stewart "Galois Theory" Chapman & Hall/CRC Mathematics

S. Weintraub "Galois Theory" Springer Universitext

I. N. Herstein "Algebra" Editori Riuniti

## Teaching methods

The preferred teaching tool for the knowledge development are the 6 weekly hours of lectures: during those hours we present the theory and a vast library of examples and exercises/applications.

Taking notes is seen as part of the learning process.

Lecctures will be videotaped and readily uploaded on ELLY.

## Assessment methods and criteria

The assessment of learning is done in classic way, through the evaluation of an oral interview on all the topics treated during the lectures. In the colloquium, the student must be able to independently conduct demonstrations and solve exercises using an appropriate algebraic language and a proper mathematical formalism.

The outcome is positive if the student obtains a grade of (at least) 18. The maximal grade is 33 and a student who obtains more than 30 points is awarded a 30 cum laude grade.

## Other information

Students interested in the course "Galois Theory" (1107151) for 6 CFU only have to cosider topics regarding Galois theory with no reference to absolute values and completions of fields. Further information can be asked directly to the teacher.