STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
cod. 15420

Anno accademico 2017/18
1° anno di corso -
Docente
Giuseppe PEDRAZZI
Settore scientifico disciplinare
Fisica applicata (a beni culturali, ambientali, biologia e medicina) (FIS/07)
Ambito
Scienze propedeutiche
Tipologia attività formativa
Caratterizzante
24 ore
di attività frontali
3 crediti
sede: -
insegnamento
in - - -

Obiettivi formativi

Il modulo di Statistica per la ricerca sperimentale e tecnologica si pone l'obiettivo di introdurre lo studente alla logica del pensiero statistico e alla sua applicazione nella pratica reale. L'esposizione degli argomenti sarà orientata a problemi concreti di analisi e di ricerca in particolar modo tratti dalla letteratura medica.
Prendendo come inizio la moltitudine di informazioni da cui siamo investiti quotidianamente, il corso si propone di fornire allo studente, in modo semplice, gli strumenti statistici necessari per descrivere e analizzare i dati, estrarre dai dati informazioni utili e prendere decisioni consapevoli.
Verrà data particolare enfasi al ragionamento statistico, all'interpretazione e al processo decisionale, a tale fine si insisterà più sulla comprensione concettuale che sul calcolo meccanico, anche alla luce dell'ampia scelta di software disponibile per l'analisi. La teoria verrà esplicitata mediante esercizi pratici e casi didattici.
L’obiettivo finale del corso sarà pertanto che lo studente apprenda il “saper fare” oltre che “il conoscere”.

Prerequisiti

- - -

Contenuti dell'insegnamento

La prima parte del corso introdurrà la logica della pianificazione statistica e del disegno sperimentale.
Verranno introdotti o richiamati i concetti di calcolo delle probabilità e calcolo combinatorio che serviranno nel seguito del corso. In questa fase verranno trattate le principali distribuzioni di probabilità tra cui la distribuzione binomiale, la distribuzione di Poisson e le distribuzioni Normale e Normale standard.

Nella seconda parte del corso verranno affrontati i metodi della statistica descrittiva. Verrà mostrato come riconoscere la tipologia dei dati e come riassumerli in opportuni indici.
Lo studente apprenderà come calcolare le misure di posizione (media, mediana, moda), variabilità (varianza, deviazione standard), il coefficiente di variazione (CV) , i percentili e il loro uso.
Verrà illustrato l'uso dei grafici principali e dei grafici meno comuni (mosaic plot, box percentile plot, parallel-violin plot, ecc)

Nella parte finale del corso verrano trattati i principi generali dell’inferenza statistica.
Verrano introdotti concetti di distribuzione campionaria, errore di I e II tipo, potenza di un test e curva operativa. Verranno quindi trattati :
test parametrici - test t di Student, ANOVA a 1 e 2 criteri di classificazione.
test non parametrici : - test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Cenni di Statistica multivariata

Programma esteso

Introduzione : statistica medica e discipline affini. La logica e la pianificazione statistica. Cenni di calcolo combinatorio: permutazioni, disposizioni, combinazioni. Applicazioni.
Cenni di calcolo delle probabilita' : probabilita' semplice e composta, teorema di Bayes.
Odds. Odds ratios. Likelihood ratios. applicazioni.
Distribuzioni di probabilita' : distribuzione binomiale, distribuzione di Poisson, distribuzione Normale e Normale standard. Tabelle e loro uso.
Come riassumere i dati. Scale di misura.
Misure di posizione, ordine e variazione. Indici di tendenza centrale, media, mediana, moda.
Indici di variabilita', varianza, deviazione standard, CV. Percentili e loro uso.
Principi generali della inferenza statistica. La distribuzione campionaria. Ipotesi e test di ipotesi. Errore di I e II tipo. Potenza di un test e curva operativa.
Power Analysis e stima della dimensione campionaria.
Test parametrici : test t di Student, Analisi della varianza ad 1 e 2 criteri di classificazione. Test non parametrici : test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Regressione lineare e correlazione. Regressione multipla. Regressione logistica.

Esercitazioni al computer con il software "R" ed Epi Info.

Bibliografia

Appunti delle lezioni.

W.W. Daniel : Biostatistica – Ed. Edises

M.M Triola, M.F. Triola : Fondamenti di Statistica, Ed. Pearson

A. Field. J. Miles, Z. Field : Discovering Statistics Using R, Ed. SAGE

Michael J. Crawley "The R book" , Ed. Wiley

Risorse e link internet

Metodi didattici

Durante le lezioni frontali verranno illustrati e commentati gli argomenti contenuti nel programma del modulo. Al termine della teoria relativa ad ogni argomento seguiranno esercizi che ne illustreranno l’applicazione in pratica. Verrà descritto il procedimento e l’esecuzione passo passo dei calcoli necessari. Verrà inoltre mostrato sia lo svolgimento manuale, sia la soluzione ottenuta mediante l’utilizzo di apposito software.
Verranno particolarmente incoraggiati l’utilizzo del software statistico open source “R” e del software libero Epi Info.

Modalità verifica apprendimento

L'accertamento del raggiungimento degli obiettivi previsti dal modulo
prevede una prova scritta, consistente principalmente in quesiti a
risposta aperta su argomenti trattati nel corso. In questo modo, verrà
accertata la conoscenza e la comprensione, da parte dello studente, sia
dei principi teorici che delle loro conseguenze in campo medico e
biologico.
La prova scritta prevederà anche la risoluzione di uno o più problemi, per
verificare il raggiungimento dell'obiettivo della capacità di applicare le
conoscenze acquisite ad una situazione simulata di interesse biologico o
medico.
La valutazione collegiale degli elaborati attribuirà lo stesso peso ale
risposte ai quesiti a risposta aperta ed ai problemi proposti.

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.medicina@unipr.it 
T. 800904084

Servizio per la qualità della didattica

Manager della didattica:
Sandra Cavalca
T. +39 0521 034908
E. servizio didattica.dimec@unipr.it
E. del manager sandra.cavalca@unipr.it 

Presidente del corso di studio

Prof. Giuseppe Pedrazzi
E. giuseppe.pedrazzi@unipr.it

Direttore delle attività didattiche professionalizzanti (DADP)

Dott.ssa Emma Galante
E. emma.galante@unipr.it

Delegato orientamento in ingresso / in uscita

Dott.ssa Emma Galante
E. emma.galante@unipr.it

Tutor didattico

Dott. Luigi Baldini
E. lbaldini@ao.pr.it

 

Delegato Erasmus scambi internazionali

Dott. Luigi Baldini
E. lbaldini@ao.pr.it

Dott.ssa Emma Galante
E. emma.galante@unipr.it

Referente assicurazione qualità

Dott.ssa Elisa Vetti
E. elisa.vetti@unipr.it 

Referente Tirocini formativi

Dott.ssa Emma Galante
E. emma.galante@unipr.it