Learning objectives
The main goal of the course is to provide students with the ability to understand the principles of informatics and programming:
* Data representation
* Computation, languages and abstract machines
* Architecture of computer systems
* Object oriented programming paradigm
* Introduction to software engineering
The ability to apply the listed knowledge elements regards the development of so-called "computational thinking":
* Decomposition of complex problems
* Solution of problems through recursion
* Composition of objects into complex systems
* Modelling with various levels of abstraction
Prerequisites
None. However, the student is supposed to know the basic computer and Internet operations - the equivalent of modules 1, 2, 3 and 7 of ECDL (European Computer Driving Licence) Syllabus.
Course unit content
1. Introduction to programming
1.1. Structured programming
1.2. Data collections and flows
1.3. Functions and recursion
1.4. Objects and abstractions
1.5. Graphical interfaces
Full programme
1. Introduction to programming (24 hours, in classroom + 24 hours, in lab)
1.1. Structured programming
1.1.1. Program structure
1.1.2. Variables and data types, expressions
1.1.3. Conditions
1.1.4. Cycles
1.1.5. Nesting
1.2. Data collections and flows
1.2.1. Vectors
1.2.2. Matrices
1.2.3. Maps
1.2.4. I/O operations on console and text files
1.3. Functions and recursion
1.3.1. Parameter passing
1.3.2. Scope of variables
1.3.3. Stack and activation records
1.3.4. Recursion
1.4. Objects and abstraction
1.4.1. Encapsulation
1.4.2. Composition
1.4.3. Dynamic allocation
1.4.4. Inheritance and polimorphism
1.4.5. Substitution principle
1.5. Graphical interfaces
1.5.1. Basic elements
1.5.2. Layout of elements
1.5.3. Signals and events
1.5.4. Animations
Bibliography
- Fondamenti di informatica e lab. (A.A. 2014-2015). McGraw-Hill custom publishing. ISBN 978-13-082-4813-4 (25€, nelle librerie universitarie )
- A.B. Downey et al.: How to Think Like a Computer Scientist: Learning with Python 3, 3rd Edition - http://openbookproject.net/thinkcs/
- M. Beri: Python, Apogeo Pocket, 2010, 978-8850329151 (~8€)
- C. S. Horstmann: Fondamenti di C++, McGraw-Hill Education, 2003, 978-8838661051 (~43€, 768pp.)
Teaching methods
Lessons in classroom, presenting slides which are provided in advance to students. Guided solution of exercises in classroom. Programming exercises in laboratory.
The laboratory exercitations are central for the course. The proposed exercises deal with the same general matters of classroom lessons. Their objective is introducing the principles of object-orientd programming, leading the student to the solution of problems with a growing level of complexity.
Assessment methods and criteria
The examination consists of a test about the basics of computer science (brief exercizes and quizzes to answer in half an hour), a programming test (an object-oriented program to develop in lab, in 3 hours) and a talk. A constant and particularly effective participation to exercitations could exonerate from the final programming test.
Other information
Alternative textbooks
- M. Dawson: Python Programming for the Absolute Beginner, Course Technology, 2010, 978-1435455009 (~21€, 450pp.)
- K. A. Lambert: Programmazione in Python, Apogeo, 2012, 978-8838786990 (~29€, 384pp.)
- MIT: Introduction to CS and Programming - Video delle lezioni, Pyhton 2 - http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- M. Dawson: Beginning C++ Through Game Programming, Course Technology, 2010, 978-1435457423 (~25€, 430pp.)
- A. Lorenzi, V. Moriggia: Programmazione ad oggetti e linguaggio C++, Atlas, 2004, 978-8826811956 - Testo per le superiori (~12€, 380pp.)
- S.B. Lippman, J. Lajoie, B.E. Moo: C++ Primer, Addison Wesley, 2012, 978-0321714114 (~36€, 940pp.)
2030 agenda goals for sustainable development
- - -