COMPLEX SYSTEMS
cod. 1007292

Academic year 2017/18
1° year of course - Second semester
Professor
Alessandro VEZZANI
Academic discipline
Fisica della materia (FIS/03)
Field
Attività formative affini o integrative
Type of training activity
Related/supplementary
60 hours
of face-to-face activities
6 credits
hub:
course unit
in - - -

Learning objectives

At the end of the course
The student will know different models of equilibrium and non-equilibrium statistical mechanics, learning both analytical and numerical techniques.
He will be able to understand how such models can be applied to different systems both in physical fields but also in interdisciplinary applications of biology, sociology, economics and informatics.
He will also be able to apply the numerical and analytical techniques for the analysis of the statistical physics model.

Prerequisites

- - -

Course unit content

The course is devoted to the study of different kinds of systems showing typical complex behaviours due to the presence of a large number of degrees of freedom. We will discuss several theoretical models adopting both analytical and numerical techniques; our aim is to find the phenomenological laws describing the global behaviour of such systems. First, we will treat purely statistical models, then we will focus on stochastic dynamics, finally we will consider graphs and complex networks. We will discuss applications in the fields of physics, biology, epidemics, informatics and economy. Due to the interdisciplinary nature of the subjects and to the different possible applications, the course is recommended to students in different fields.

Full programme

1 Equilibrium statistical mechanics
Ensemble theory, mean field and phase transitions. Finite-size scaling and Binder cumulant. Focus on some statistical models relevant for their phenomenology and for their applications: interdisciplinary applications of the Ising model, Potts, p-spin, Hopfield model, XY model (Kosterlitz Thouless transition), polymeric chains, percolation.
2 Dynamics
Montecarlo method, detailed balance. Master equations and random walks. Brownian motion, Langevin and Fokker-Plank equations. Out of equilibrium systems. Arrhenius law. Time dependent linear response theory. Transport and Einstein equation. Entropy productions in time dependent dynamics. Subdiffusion in continuous time random walks and Superdiffusion in Lévy walks. Slow dynamics: coarsening of magnetic domains for the Ising model, dynamical scaling exponent.
Purely dynamical models: SIS and SIR models in epidemics. Contact process and directed percolation as a paradigm of dynamical phase transition. Dynamical mean field. Voter model. Sand-pile model and self-organized criticality. Application of dynamical mean field to quantum systems Gutzwiller equation and discrete nonlinear Schrodeinger equation for bosons on lattices. Synchronization and Kuramoto model. Neural networks dynamics.
3 Graphs and complex networks
Definition of graph: degree, radius, adjacency matrix. Linear models on graphs: harmonic oscillators, electric networks and random walks. Fractal dimension and spectral dimension. Anomalous diffusion on fractals. Complex networks, small world and scale free network (Watts-Strogatz e di preferential attachment). Study of some statistical models on complex networks: percolation and epidemic models.
4 Applications. In the different subjects we discuss applications in physics but also in interdisciplinary fields: biology, epidemics, informatics and sociology.

Bibliography

Lecture notes.

Teaching methods

Class lectures. Moreover, the student will prepare a simple numerical simulation on a subject of the course, in order to get acquainted with the numerical and analytical techniques. Possible criticalities in the numerical simulations can be discussed with the teacher outside of the class lectures.

Assessment methods and criteria

The examination consists of an oral proof divided into two parts. In the first the student will presents the results of the numerical simulations prepared during the course (15 pts). In the second consists of an oral exam focused on the key points of the course (15 pts).

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Segreteria studenti

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
Office E. smfi.didattica@unipr.it
Manager E.giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

 

Erasmus delegates

Prof. Leonardo Biliotti
E. leonardo.biliotti@unipr.it

Quality assurance manager

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Internships

Prof. Costantino Medori
E.
 costantino.medori@unipr.it

Tutor students

Dott.ssa Fabiola Ricci
E. fabiola.ricci1@studenti.unipr.it