GEOMETRIA
cod. 13102

Anno accademico 2024/25
1° anno di corso - Secondo semestre
Docente
Leonardo BILIOTTI
Settore scientifico disciplinare
Geometria (MAT/03)
Ambito
Matematica, informatica e statistica
Tipologia attività formativa
Base
72 ore
di attività frontali
9 crediti
sede: PARMA
insegnamento
in ITALIANO

Obiettivi formativi


Conoscenza e capacità di comprensione
Lo studente apprenderà le nozioni e le tecniche di base dell'algebra lineare e della geometria Euclidea mediante le lezioni frontali tenute durante il corso.

Capacità di applicare conoscenza e comprensione
Lo studente saprà: i) risolvere sistemi di equazioni lineari; ii) semplici esercizi di geometria analitica nello spazio; operare su vettori e matrici; iii) diagonalizzare operatori e matrici.Autonomia di giudizio: Lo studente dovra' essere in grado di valutare la coerenza e correttezza dei risultati ottenuti da lui o da altri.Capacita' comunicative.Le lezioni frontali e il confronto diretto con il docente favoriranno l'acquisizione da parte dello studente di un lessico scientifico specifico e appropriato. Ci si attende che, alla fine del corso, sia in grado di comunicare in modo chiaro e preciso contenuti matematici.Capacità di apprendimento:Lo studente dopo aver seguito il corso sarà in grado di approfondire autonomamente le proprie conoscenze nell'ambito del algebra lineare e la teoria degli spazi vettoriali.

Prerequisiti

- - -

Contenuti dell'insegnamento


Il corso è una introduzione alle nozioni di base dell'algebra lineare e della geometria. La prima parte studia la geometria euclidea nello spazio (vettori, rette, piani), mentre la seconda parte è rivolta allo studio di matrici e sistemi lineari. Nella terza parte si studiano gli spazi vettoriali, le applicazioni lineari e il problema della diagonalizzazione degli operatori e delle matrici. Il corso termina con la trattazione dei prodotti scalari ed Hermitiani.

Programma esteso

Geometria euclida e prodotto vettoriale. Elementi di geometria analitica dello spazio. Equazioni parametriche e cartesiane di una retta. Posizione reciproca di due rette; rette sghembe. Equazione di un piano. Prodotto scalare canonico e distanza. Prodotto vettore e sue proprietà fondamentali. Spazi vettoriali reali e complessi. Sottospazi vettoriali: somma e intersezione. Combinazione lineare di vettori: dipendenza/indipendenza lineare. Generatori, basi e dimensione di uno spazio vettoriale. Formula di Grassmann. Determinanti: definizione tramite le formule di Laplace e proprietà fondamentali. Teorema di Binet.
Operazioni elementari di riga e colonna su matrici. Calcolo della matrice inversa. Rango di una matrice. Sistemi lineari. Metodo di Gauss-Jordan e teorema di Rouché Capelli. Applicazioni lineari. Definizione di nucleo e di immagine; teorema fondamentale sulle applicazioni lineari. Matrice associata ad una applicazione lineare e regola di cambiamento di base. Isomorfismi e applicazioni inverse. Endomorfismi di uno spazio vettoriale: autovalori, autovettori e autospazi. Polinomio caratteristico. Molteplicità algebrica e geometrica di un autovalore. Endomorfismi diagonalizzabili.
Prodotti scalari. Complemento ortogonale di un sottospazio. Processo di ortogonalizzazione di Gram-Schmidt. Rappresentazione di isometrie tramite matrici ortogonali. Il gruppo ortogonale. Diagonalizzazione di matrici simmetriche: teorema spettrale. Criterio di positività per prodotti
scalari. Cenni al caso complesso.

Bibliografia


M. Abate, C. De Fabritiis, Geometria analitica con elementi di algebra lineare, 2a ed., Mc Graw-Hill, 2010.

Metodi didattici


Durante le lezioni frontali verranno proposti gli argomenti del corso dal punto di vista formale, corredati da esempi significativi e applicazioni, e numerosi esercizi. Gli esercizi sono uno strumento essenziale in algebra lineare e geometria; per questo, in aggiunta alle lezioni, saranno proposti esercizi da svolgere in modo guidato nell’ambito del Progetto IDEA.

Modalità verifica apprendimento

La verifica dell'apprendimento prevede un esame finale comprendente un test preliminare a risposta multipla, un elaborato scritto e un colloquio orale. Potrebbero essere previste due prove intermedie durante il corso, che valgono ai fini del superamento della prova scritta e test finali. Nella prova scritta, attraverso i test e gli esercizi proposti, lo studente dovra' dimostrare di possedere le conoscenze di base dell'algebra lineare e della geometria. Nel colloquio orale lo studente dovrà essere in grado di enunciare e dimostrare i risultati presentati durante le lezioni, utilizzando un linguaggio appropriato ed un formalismo matematico corretto. Vi sono domande giudicate imprescindibili: non saper rispondere denota una conoscenza insufficiente della mayeria e comporta l'immediata fine dell'esame. La lista verrà pubblicata su ELLY entro la fine del corso.

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

L'obbiettivo primario è assicurarsi che tutti i ragazzi e le ragazze abbiano una didattica di qualità che porti a rilevanti ed efficaci risultati
di apprendimento

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.ingarc@unipr.it
 

Servizio per la qualità della didattica

Manager della didattica:
IIaria Magnati
T. +39 0521 906538 
E. servizio disti.didattica@unipr.i
E. del manager ilaria.magnati@unipr.it

Presidente del corso di studio

Fabio Bozzoli
E. fabio.bozzoli@unipr.it

Delegato/a orientamento in ingresso

Enrica Riva
E. enrica.riva@unipr.it 
Andrea Volpi
E. andrea.volpi@unipr.it

Delegato/a orientamento in uscita

Enrica Riva
E. enrica.riva@unipr.it 
Andrea Volpi
E. andrea.volpi@unipr.it

Docenti tutor


 

Delegati/e Erasmus

Referente assicurazione qualità

Claudio Favi
E. claudio.favi@unipr.it

Studenti e studentesse tutor

Barbaresi Andrea
E. andrea.barbaresi@unipr.it 
Bocelli Michele
E. michele.bocelli@unipr.it 
Cipressi Massimo
E. massimo.cipressi@studenti.unipr.it 
Conti Matteo
E. matteo.conti@unipr.it 
Muratore Vincenzo Andrea
E. vincenzoandrea.muratore@unipr.it 
Preite Luca
E. luca.preite@unipr.it 
Verza Edoardo
E. edoardo.verza@unipr.it