Obiettivi formativi
Conoscenze e capacità di comprendere:
Alla fine del percorso di insegnamento lo studente dovrà conoscere le definizioni e risultati fondamentali dell'analisi in una variabile, e dovrà essere in grado di comprendere come questi entrano nella risoluzione di problemi.
Competenze:
Lo studente dovrà essere in grado di applicare le conoscenze acquisite per la risoluzione di problemi anche mediamente elaborati, e di comprenderne l'uso nei corsi applicativi.
Autonomia di giudizio:
Lo studente dovrà essere in grado di valutare la coerenza e correttezza dei risultati ottenuti da lui o fornitigli.
Capacità comunicative:
Lo studente dovrà essere in grado di comunicare in modo chiaro e preciso anche al di fuori di un contesto di calcolo.
Prerequisiti
Conoscenze preliminari: algebra elementare; trigonometria; geometria analitica; potenze razionali; esponenziali e logaritmi; funzioni elementari.
Contenuti dell'insegnamento
Logica.
Insiemi numerici.
Calcolo combinatorio e probabilita' elementare.
Funzioni reali.
Successioni
Funzioni continue.
Derivate.
Integrazione.
Serie.
Tutto il programma viene dimostrato.
Programma esteso
Conoscenze preliminari: algebra elementare; trigonometria; geometria analitica; potenze razionali; esponenziali e logaritmi; funzioni elementari.
Logica: proposizioni e predicati; insiemi; funzioni; relazioni d'ordine e di equivalenza.
Insiemi numerici: numeri naturali e principio di induzione; calcolo combinatorio e probabilità elementare; numeri interi e razionali; numeri reali; numeri complessi e radici n-esime.
Funzioni reali: estremi di funzioni reali; funzioni monotone; funzioni pari e dispari; potenze; valore assoluto; funzioni trigonometriche; funzioni iperboliche; grafici di funzioni reali.
Successioni: cenni di topologia; successioni e loro limiti; teoremi di confronto e teoremi algebrici; continuità; successioni monotone; teoremi di Bolzano-Weierstrass e di Cauchy; esempi fondamentali; il numero di Nepero "e"; successioni definite per ricorrenza; successioni complesse.
Funzioni continue: limiti di funzioni; continuità; prime proprietà delle funzioni continue; funzioni continue su un intervallo (zeri, valori intermedi); teorema di Weierstrass; funzioni uniformemente continue, teorema di Heine-Cantor, Lipschitzianità; infinitesimi.
Derivate: definizione di derivata e prime proprietà; operazioni algebriche sulle derivate; derivate e proprietà locali delle funzioni; teoremi di Rolle, Lagrange, Cauchy; forme indeterminate e teoremi di de l'Hôpital, formule di Taylor e vari resti, sviluppi asintotici; funzioni convesse; studio qualitativo delle funzioni.
Integrazione: costruzione dell'integrale e prime proprietà; primitive; metodi di integrazione; integrali generalizzati; integrazione delle funzioni razionali.
Serie: definizione di serie e prime proprietà; criteri di convergenza per serie a termini non negativi; serie a termini di segno alternato.
Bibliografia
Per la parte teorica e gli esercizi
E. ACERBI e G. BUTTAZZO: Primo corso di Analisi matematica, ed. Universitas
D. MUCCI: Analisi matematica esercizi vol.1, ed. Universitas
per gli esercizi da esame
E. ACERBI, D. MUCCI: Esami di Analisi matematica 1 (3 voll.), Universitas editore, Parma, 2023
Metodi didattici
Modalita' di insegnamento:
Lezioni e attivita' di esercitazione in presenza
Modalita' d'esame:
Prova scritta (divisa in due parti) e prova orale; esercitazioni scritte bisettimanali durante l'anno.
Modalità verifica apprendimento
Esame scritto e orale a fine corso.
Le conoscenze e la capacità di comprendere sono verificate la prima con la gestione dell'esame orale e le seconde con la decodifica del testo dei problemi.
La verifica delle competenze è demandata alla risoluzione dei problemi proposti. La prima parte dell'esame scritto comprende sia esercizi di pura conoscenza (se z=5+7i allora z al quadrato e'...) sia esercizi che richiedono comprensione dei concetti (se z=1+i allora z alla 3257 e'...)
L'autonomia di giudizio è verificata se lo studente è in grado di selezionare le risposte plausibili da quelle implausibili.
Le capacità di comunicare sono verificate valutando il modo e la correttezza dell'espressione, sia scritta che orale, dei concetti matematici.
Altre informazioni
- - -
Obiettivi agenda 2030 per lo sviluppo sostenibile
- - -