Obiettivi formativi
Il corso ha l’obiettivo di consentire allo studente di conoscere e di comprendere elementi essenziali della Geometria euclidea del piano e dello spazio; il corso ha anche lo scopo di consentire allo studente di utilizzare la conoscenza e la comprensione acquisita in problemi riguardanti la struttura spaziale dell’ambiente reale, strutture grafiche e architettoniche.
Il corso approfondisce tematiche importanti per un futuro insegnante di matematica.
Prerequisiti
corso di Geometria 1 e di Algebra
Contenuti dell'insegnamento
Studio delle isometrie del piano e dello spazio euclidei.
Poligoni e loro gruppi di simmetria. Cerchi e triangoli.
Tassellazioni del piano e loro gruppi di simmetria. Gruppi dei fregi e dei mosaici.
Poliedri, poliedri regolari e loro gruppi di simmetria. Gruppi finiti di isometrie dello spazio.
Programma esteso
Studio delle isometrie del piano e dello spazio euclidei.
Poligoni e loro gruppi di simmetria. Cerchi e triangoli.
Tassellazioni del piano e loro gruppi di simmetria. Gruppi dei fregi e dei mosaici.
Poliedri, poliedri regolari e loro gruppi di simmetria. Gruppi finiti di isometrie dello spazio.
Bibliografia
M. DEDO', FORME, ED. ZANICHELLI 1999.
Dispense a cura del Docente.
Metodi didattici
Durante le lezioni frontali verranno proposti gli argomenti dal punto di vista formale, corredati da esempi significativi e applicazioni, ed esercizi. Gli esercizi sono uno strumento essenziale in Geometria Euclidea; spesso sono proposti esercizi da svolgere in modo autonomo, per guidare gli studenti ad applicare le loro conoscenze a casi particolari.
Modalità verifica apprendimento
La verifica dell'apprendimento avviene in forma classica attraverso la valutazione di un elaborato scritto e di un colloquio orale.
Nella prova scritta, attraverso gli esercizi proposti, lo studente dovrà dimostrare di possedere le conoscenze di base relative alla Geometria Euclidea. Inoltre verrà richiesto allo studente di applicare le sue conoscenze a casi particolari.
Nel colloquio orale lo studente dovrà essere in grado di condurre autonomamente dimostrazioni relative a proprietà intrinseche delle strutture studiate utilizzando un appropriato linguaggio geometrico e algebrico ed un formalismo matematico corretto, dimostrando così autonomia di giudizio in campo matematico.
Altre informazioni
- - -
Obiettivi agenda 2030 per lo sviluppo sostenibile
- - -