Obiettivi formativi
Il corso si propone di introdurre lo studente ad alcune delle tematiche e dei metodi fondamentali del Calcolo delle Variazioni e delle sue applicazioni ad altre branche dell'Analisi Matematica.
Prerequisiti
Teoria della Misura e argomenti base di Analisi Funzionale.
Contenuti dell'insegnamento
-Metodi diretti del Calcolo delle Variazioni e loro applicazione allo studio delle Equazioni Differenziali alle Derivate Parziali (EDP).
-Introduzione alla Teoria della Regolarità: l'approccio alla Campanato, il Teorema di De Giorgi-Nash e loro applicazione allo studio della regolarità dei minimizzi alcuni funzionali integrali del Calcolo delle Variazioni.
-Introduzione alla Teoria dei Punti Critici: Il Teorema del Passo di Montagna e sue applicazioni alle EDP.
-Introduzione alla Gamma-convergenza, esempi e applicazioni.
- Problemi di evoluzione: il metodo dei Movimenti Minimizzanti.
Supplementi (se ci sarà tempo):
- Cenni di Calcolo delle Variazioni vettoriale.
- Esempi di funzionali definiti su spazi di funzioni discontinue, in una e più dimensioni.
Programma esteso
- - -
Bibliografia
-"Partial Differential Equations" di L. C. Evans
-"An introduction to Gamma-convergence" di G. Dal Maso
-"Gamma-convergence for beginners" di A. Braides
Metodi didattici
Lezioni frontali.
Modalità verifica apprendimento
Esame orale.
Altre informazioni
- - -