ANALISI MATEMATICA 3
cod. 1005563

Anno accademico 2018/19
3° anno di corso - Primo semestre
Docente
Alberto Giorgio AROSIO
Settore scientifico disciplinare
Analisi matematica (MAT/05)
Ambito
Formazione teorica
Tipologia attività formativa
Caratterizzante
72 ore
di attività frontali
9 crediti
sede: PARMA
insegnamento
in ITALIANO

Obiettivi formativi

Il corso vuole illustrare i principali risultati di analisi funzionale, della teoria della misura e di teoria degli spazi Lp.
- Conoscenze e capacità di comprendere: Alla fine del percorso di insegnamento lo studente dovrà conoscere le definizioni e risultati fondamentali di analisi funzionale, della teoria degli spazi Lp, della teoria della misura.
- Capacità di applicare conoscenza e comprensione: Lo studente dovrà essere in grado di applicare le conoscenze acquisite alla risoluzione di problemi di analisi funzionale e di comprendere le relazioni con gli argomenti appresi in altri corsi.
- Autonomia di giudizio: Lo studente dovrà essere in grado di valutare la coerenza e correttezza deille dimostrazioni e di produrne in autonomia.
- Capacità comunicative: Lo studente dovrà essere in grado di comunicare in modo chiaro e preciso, adatto a uno scienziato in stadio intermedio di formazione.
- Capacità di apprendimento: Collegamenti tra i diversi argomenti trattati durante il corso di studio

Prerequisiti

TOPOLOGIA GENERALE (i contenuti insegnati nei corsi di Analisi Matematica 1 e 2, Geometria 1 e 2)

Contenuti dell'insegnamento

1) Spazi normati e di Banach
2) Spazi di operatori tra spazi normati
3) Teorema di Hahn-Banach e conseguenze
4) Teorema di Banach-Steinhaus e conseguenze
5) Teorema dell'applicazione aperta e conseguenze
6) Topologie deboli in spazi di Banach
7) Spazi riflessivi
8) Spazi di Hilbert: definizioni, criteri di hilbertianità, proiezioni, sistemi ortonormali.
9) Applicazione: serie di Fourier.
10) Teoria della Misura: misura e integrale di Lebesgue e teoremi di convergenza.
11) Spazi Lp
12) Convoluzioni

Programma esteso

1) Spazi normati e di Banach
2) Spazi di operatori tra spazi normati
3) Teorema di Hahn-Banach e conseguenze
4) Teorema di Banach-Steinhaus e conseguenze
5) Teorema dell'applicazione aperta e conseguenze
6) Topologie deboli in spazi di Banach
7) Spazi riflessivi
8) Spazi di Hilbert: definizioni, criteri di hilbertianità, proiezioni, sistemi ortonormali.
9) Applicazione: serie di Fourier.
10) Teoria della Misura: misura e integrale di Lebesgue e teoremi di convergenza.
11) Spazi Lp
12) Convoluzioni

UN PROGRAMMA DETTAGLIATO IN FORMATO .DOCX O .PDF PUO' ESSERE RICHIESTO VIA EMAIL A ALBERTO.AROSIO@UNIPR.IT - COSI' COME QUALSIASI CHIARIMENTO SU QUESTO CORSO

Bibliografia

1) H. Brezis. Functional analysis, Sobolev spaces and partiare differential
equations, Springer Verlag 2011

2) W. Rudin. Real and complex Analysis. McGraw-Hill Book Co., New York, 1987

Metodi didattici

Lezioni frontali TRAMITE LUCIDI (=TRASPARENTI) E LAVAGNA TRADIZIONALE, nelle quali verranno presentati i principali risultati
dell'analisi funzionale. I risultati teorici saranno accompagnati da esempi e CONTROESEMPI
che serviranno allo studente per comprenderne le applicazioni e l'importanza degli argomenti trattati.

Modalità verifica apprendimento

La verifica dell'apprendimento avviene attraverso la valutazione di una prova scritta e di una prova orale.
Saranno valutate la conoscenza dei risultati astratti presentati nel corso,
le loro dimostrazioni, l'autonomia dello studente e l'acquisizione di un linguaggio specifico.

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E-mail: segreteria.scienze@unipr.it
 

Servizio per la qualità della didattica

Manager della didattica:
dott.ssa Giulia Bonamartini
T. +39 0521 904157
E-mail servizio smfi.didattica@unipr.it
E-mail del manager giulia.bonamartini@unipr.it

Presidente del corso di studio

Prof. Luca Lorenzi
E-mail: luca.lorenzi@unipr.it

Delegato orientamento in ingresso

Prof. Luca Lorenzi
E-mail: luca.lorenzi@unipr.it

Delegato orientamento in uscita

Prof.ssa Chiara Guardasoni
E-mail: chiara.guardasoni@unipr.it

Docenti tutor

Prof. Emilio Acerbi
E-mail: emilio.acerbi@unipr.it

Prof. Marino Belloni
E-mail: marino.belloni@unipr.it

Prof.ssa Maria Groppi
E-mail: maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E-mail: chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E-mail: luca.lorenzi@unipr.it

Prof. Costantino Medori
E-mail: costantino.medori@unipr.it

Prof. Adriano Tomassini
E-mail: adriano.tomassini@unipr.it

Delegati Erasmus

Prof. Leonardo Biliotti 
E-mail: leonardo.biliotti@unipr.it 
 

Responsabile assicurazione qualità

Prof.ssa Maria Groppi
E-mail: maria.groppi@unipr.it

Referente per le fasce deboli

Prof.ssa Fiorenza Morini
E-mail: fiorenza.morini@unipr.it