ANALISI MATEMATICA
cod. 00013

Anno accademico 2013/14
1° anno di corso - Primo semestre
Docente
Alessandro ZACCAGNINI
Settore scientifico disciplinare
Analisi matematica (MAT/05)
Ambito
Formazione matematico-fisica
Tipologia attività formativa
Base
72 ore
di attività frontali
9 crediti
sede: PARMA
insegnamento
in - - -

Obiettivi formativi

Le nozioni di base dell'analisi matematica (limiti, derivate, integrali). Competenze: studio di funzioni, metodi principali di integrazione

Prerequisiti

Nessuno

Contenuti dell'insegnamento

Il concetto di limite per le successioni. Calcolo differenziale e integrale per funzioni reali di una variabile reale

Programma esteso

Insiemi e numeri. Elementi di teoria degli insiemi, operazioni tra insiemi. Insiemi numerici: N, Z, Q, R, C. Rappresentazione dei numeri reali su una retta; massimo, minimo, estremo superiore e inferiore; parte intera e modulo dei numeri reali; potenze, radici, radici n-esime dei numeri non negativi. Forma algebrica, trigonometrica ed esponenziale dei numeri complessi; radici n-esime di un numero complesso.

Funzioni. Funzioni iniettive, suriettive, biiettive, funzioni composte, funzione inversa; grafici; funzioni reali di variabile reale, funzioni monotone; potenze con esponente reale, funzioni esponenziali e logaritmiche; angoli, funzioni trigonometriche. Cenni alla cardinalita` (anche infinita).

Successioni e serie numeriche. Limiti di successioni. Cenni alle serie numeriche e ai criteri di convergenza.

Limiti e continuita`. Limiti di funzioni reali di variabile reale; limite della somma, prodotto, quoziente di due funzioni; limite destro e sinistro. Continuita` di funzioni reali di variabile reale, proprieta` notevoli delle funzioni continue.

Calcolo differenziale. Rapporto incrementale, derivata, significato geometrico della derivata; regole di derivazione: derivate della somma, prodotto, quoziente di due funzioni; derivate di funzioni composte e di funzioni inverse; derivate delle funzioni elementari; massimi e minimi relativi; punti stazionari; relazione fra monotonia e segno della derivata; teoremi di Fermat, Rolle, Lagrange, De l'Hopital; derivate di ordine superiore; sviluppo in serie di Taylor. Studio dei grafici di funzioni derivabili.

Integrali. Primitive di funzioni in un intervallo e integrali indefiniti; interpretazione geometrica dell'integrale; proprietà degli integrali; teorema fondamentale del calcolo integrale; integrazione per parti e per sostituzione; calcolo esplicito di integrali di funzioni elementari.

Bibliografia

M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica, Mc Graw-Hill

Metodi didattici

Lezione frontale tradizionale. Esercitazioni svolte in classe

Modalità verifica apprendimento

Prova finale scritta e orale, con verifica dell'apprendimento delle nozioni di base (limiti, derivate, integrali per funzioni reali di una variabile reale)

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti


E. segreteria.scienze@unipr.it

Servizio per la qualità della didattica

Manager della didattica:
Dott.ssa Claudia Buga

T. 0521 902842
E. smfi.didattica@unipr.it
E. claudia.buga@unipr.it

Presidente del corso di studio

Prof. Vincenzo Bonnici
E. vincenzo.bonnici@unipr.it

Delegato orientamento in ingresso

Prof. Vincenzo Arceri
E. vincenzo.arceri@unipr.it

Delegato orientamento in uscita

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Referente piani di studio

Prof. Flavio Bertini
E. flavio.bertini@unipr.it

Referente convalide

Prof. Andrea Munaro
E. andrea.munaro@unipr.it

Docenti tutor

Prof. Enea Zaffanella
E. enea.zaffanella@unipr.it

Delegati Erasmus

Prof. Andrea Munaro
E. andrea.munaro@unipr.it

Studente tutor per scambi all'estero (in definizione)
E.

Responsabile assicurazione qualità

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Tirocini formativi

Referente prof. Enea Zaffanella
E. enea.zaffanella@unipr.it

Referente per le fasce deboli

Prof. Fiorenza Morini
E. fiorenza.morini@unipr.it

Studenti tutor

Tutor a.a. 2024-2025 
Dott. Saverio Mattia Merenda
Tutorato a sportello tutti i venerdì 9:00-10:30 in aula M a Matematica previo appuntamento via e-mail:
E. saveriomattia.merenda@studenti.unipr.it
 

Rappresentanti degli studenti in CCSU

  • Lorenzo Copelli
  • Alessandro Frasconi
  • Marcello Galli
  • Samuel Seligardi