Learning objectives
Provide the basic tools of Mathematical Analysis
Prerequisites
No
Course unit content
Real analysis, functions of one variable, sequences, series
Full programme
Complex numbers. Definitions, operations, complex plain, polar form, root extraction.
Sequences. Mathematical induction; real and complex sequences;
limit of a sequence; subsequences; Cauchy sequences; monotonic sequences;
Neper's number; sequences defined by recurrence relation; upper and lower limits;
Bolzano-Weirstrass theorem, compactness in the real line. Uniform continuity.
Series. Convergence criteria: comparison tests, ratio test, root test; absolute convergence;
rearrangements; alternating series; examples: geometric series, harmonic series, power series.
Improper integrals; convergence of the integral, absolute convergence,
comparison tests. Integral test for positive valued series.
Bibliography
E. Acerbi, G. Buttazzo: Primo corso di Analisi Matematica, Ed. Pitagora, 1997.
E. Acerbi, G. Buttazzo: Analisi matematica ABC, Ed. Pitagora, 2000.
M. Bramanti, C.D. Pagani, S. Salsa: Analisi Matematica 1, Ed. Zanichelli, 2008.
M. Giaquinta, L. Modica, Analisi Matematica 1, vol. 1 & 2, Ed. Pitagora, 1998.
E. Giusti, Analisi matematica vol.1, Ed. Boringhieri, 2002
Teaching methods
classroom lectures and classroom exercises
Assessment methods and criteria
written and oral examination
Other information
- - -
2030 agenda goals for sustainable development
- - -