AMPLIFIER DESIGN + DIGITAL AND EMBEDDED SYSTEMS
cod. 1010145

Academic year 2023/24
3° year of course - First semester
Professor responsible for the course unit
Michele CASELLI
integrated course unit
12 credits
hub: PARMA
course unit
in ITALIAN

Course unit structured in the following modules:

Learning objectives

1st Module
Knowledge:
-Basic knowledge of analog electronic circuits with MOS and bipolar transistors (signal and power amplifiers)

Skills:
-Understanding and analyzing the schematic of a simple amplifier
-Designing and sizing simple analog circuits
-Simulating an analog circuit

Soft skills:
- The student will acquire the capability of using CAD tools for designing transistor-based circuits

Prerequisites

1st Module
1. Linear circuits theory
1.1 Analysis methods (Kirchoff, nodal analysis, etc.)
1.2 Linear circuits with sine-wave stimuli
1.3 Laplace transform: application to linear circuits with reactive components.
2. Bode diagram
3. Basics of electronic devices: diode, BJT, MOS transistor

Course unit content

1st Module
THEORY
1 Introduction
1.1 Analog and digital signals
1.2 Linear and non-linear systems, distortion.
1.3 The concept of linearization
1.4 Small-signal equivalent circuit of: p-n diode, BJT and MOS transistor.
1.5 Linear amplifier: models and definitions of input and output impedance, amplification, transconductance, and transresistance.
2 Amplifiers
2.1 Common Emitter (CE)
2.1.1 Large signal and small signal analysis; derivation of network function.
2.1.2 Biasing techniques and circuits
2.2 Common-collector and common-base stages (CC and CB)
2.3 Single-transistor MOS amplifiers: common-source, common-gate and common-drain.
2.4 Multi-stage amplifiers
2.5 BJT differential amplifier
3 Current mirrors and amplifiers with active load
3.1 CS and CE active load amplifiers
3.2 differential amplifiers with active load.
4 High-frequency behavior of amplifiers
4.1 Frequency response of CE amplifier

5 Circuits with feedback

6 Simulation of analog circuits basic circuits based on MOS or bipolar transistor are considered.
(LTspice)

Full programme

1st Module
THEORY
1 Introduction
1.1 Analog and digital signals
1.2 Linear and non-linear systems, distortion.
1.3 The concept of linearization
1.4 Small-signal equivalent circuit of: p-n diode, BJT and MOS transistor.
1.5 Linear amplifier: models and definitions of input and output impedance, amplification, transconductance, and transresistance.
2 Amplifiers
2.1 Common Emitter (CE)
2.1.1 Large signal and small signal analysis; derivation of network function.
2.1.2 Biasing techniques and circuits
2.2 Common-collector and common-base stages (CC and CB)
2.3 Single-transistor MOS amplifiers: common-source, common-gate and common-drain.
2.4 Multi-stage amplifiers
2.5 BJT differential amplifier
3 Current mirrors and amplifiers with active load
3.1 CS and CE active load amplifiers
3.2 differential amplifiers with active load.
4 High-frequency behavior of amplifiers
4.1 Frequency response of CE amplifier

5 Circuits with feedback

6 Simulation of analog circuits basic circuits based on MOS or bipolar transistor are considered.
(LTspice)

Bibliography

1st Module
P. R. Gray, P.J. Hurst, S.H. Lewis, R. G. Meyer, “Analysis and Design of Analog Integrated Circuits”, 5th Edition, Wiley.
C. Morandi, “Fondamenti di Elettronica C”, online at lea.unipr.it (course: Elettronica 2), folder "DISPENSE"
R. Menozzi, “Appunti di Elettronica”, Pitagora.
J. Milmann and C.C. Halkias, “Electronics devices and circuits”, McGraw-Hill, Chapter 9

Teaching methods

1st Module
Lectures.
Exercises are solved in the classroom and deal with the analysis and design of simple analogue circuits.

Assessment methods and criteria

1st Module
Final written test and oral exam
A positive result in the written test is mandatory to access to the oral exam, which is based on simulator.
For a final grade higher than 26/30, the student must ask for an optional part of the oral test, based on theoretical questions.
Books or manuscripts cannot be used during the written test.
If a positive result is achieved in the written test, oral exam must be taken within the same session
If the oral exam is not passed, the student must repeat the written test.
The final mark is the weighted average of the marks achieved in the oral exam and written test.
To access to the written test, subscription at the dedicated www pages (at www.unipr.it) is mandatory.

Other information

1st Module
Web pages of the course with
-teaching materials (slides and manuscripts)
-example of written tests

at http://elly.dii.unipr.it/

Students are asked to subscribe to the mailing list of the course

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.ingarc@unipr.it

Quality assurance office

Education manager:
Elena Roncai
T. +39 0521 903663
Office E. dia.didattica@unipr.it
Manager E. elena.roncai@unipr.it

 

President of the degree course

Gianluigi Ferrari
E. gianluigi.ferrari@unipr.it

Faculty advisor

Giovanna Sozzi
E. giovanna.sozzi@unipr.it

Career guidance delegate

Guido Matrella
E. guido.matrella@unipr.it

Tutor professor

Boni Andrea
E. andrea.boni@unipr.it
Caselli Stefano
E. stefano.caselli@unipr.it
Cucinotta Annamaria
E. annamaria.cucinotta@unipr.it
Nicola Delmonte
E. nicola.delmonte@unipr.it
Mucci Domenico
E. domenico.mucci@unipr.it
Saracco Alberto
E. alberto.saracco@unipr.it
Ugolini Alessandro
E. alessandro.ugolini@unipr.it
Vannucci Armando
E. armando.vannucci@unipr.it

Erasmus delegates

Paolo Cova
E. paolo.cova@unipr.it
Corrado Guarino
E. corrado.guarinolobianco@unipr.it
Walter Belardi
E. walter.belardi@unipr.it

Quality assurance manager

Massimo Bertozzi
E. massimo.bertozzi@unipr.it

Tutor students

SPAGGIARI Davide E. davide.spaggiari@unipr.it
MUSETTI Alex E. alex.musetti@unipr.it
BERNUZZI Vittorio E. vittorio.bernuzzi1@studenti.unipr.it
NKEMBI Armel Asongu E. armelasongu.nkembi@unipr.it
BASSANI Marco E. marco.bassani@unipr.it
ZANIBONI Thomas E. thomas.zaniboni@unipr.it
BOCCACCINI Riccardo E. riccardo.boccaccini@unipr.it
MORINI Marco E. marco.morini@unipr.it
SHOZIB Md Sazzadul Islam E. mdsazzadulislam.shozib@studenti.unipr.it