MATHEMATICAL ANALYSIS 3
cod. 1005563

Academic year 2022/23
3° year of course - First semester
Professor
Pietro CELADA
Academic discipline
Analisi matematica (MAT/05)
Field
Formazione teorica
Type of training activity
Characterising
72 hours
of face-to-face activities
9 credits
hub:
course unit
in ITALIAN

Learning objectives

This course presents some of the main ideas and basic working tools of modern analysis, starting with Lebesgue's theory of measure and integration and moving on towards topics of linear functional analysis in Banach and Hilbert spaces including weak topologies. Applications to the study of classical problems in real analysis are emphasized.

By the end of lectures students must

1. exhibit solid knowledge and thorough conceptual understanding of the subject;

2. be able to produce rigorous proofs of results related to those examined in the lectures;

3. be able to evaluate coherence and correctness of results obtained by themselves or by others;

4. be able to communicate the course content effectively using the appropriate scientific lexicon;

5. be able to read autonomously scientific books and articles on the subject.

Prerequisites

Solid knowledge of single and multivariable differential and integral calculus, linear algebra and topology.

Course unit content

Basic elements of Lebesgue's theory of measure and integration and linear functional analysis in Banach and Hilbert spaces.

Full programme

1) Measure theory and abstract integration.
2) Caratheodory's construction of measures.
3) Lebesgue's measure and integral in R^n
4) Locally compact Hausdorff spaces and Radon measures.
5) Real/complex measures and Radon-Nikodym theorem.
6) Banach spaces and bounded linear operators. Dual space.
7) Hahn-Banach theorem, open mapping theorem and uniform boundedness principle.
8) Banach spaces of continuous functions (completeness, separability, compactness and duals).
9) Lp spaces (completeness, separability, compactness and duals).
10) Hilbert spaces.
11) Spectral theory for compact, selfadjoint operators.
12) Fourier series: pointwise convergence and L2 theory.
13) Weak and weak* topologies.

Bibliography

Handouts and material taken from the following textbooks:

W. Rudin "Real and complex analysis", McGraw-Hill, New York 1987
W. Rudin "Functional analysis", McGraw-Hill, New York 1991
G. B. Folland "Real analysis. Modern techniques and applications", J. Wiley & Sons, New York 1999
E. Hewitt -- K. Stromberg "Real and abstract analysis", Springer-Verlag, New York 1975
H. Brezis "Functional analysis, Sobolev spaces and partial differential equations", Springer-Verlag, New York 2011

Teaching methods

Lezioni frontali in presenza ed esercitazioni individuali (4 ore per settimana). Gli studenti sono tenuti a seguire il protocollo di sicurezza elaborato dall'ateneo per contenere la diffusione del virus Covid-19.

Assessment methods and criteria

Assessment is based on assignments and an oral examination. The oral examination aims at assessing knowledge and comprehension on the contents of lectures.

Exams will be in-person or online depending on the evolution of Covid-19 pandemic.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof. Emilio Acerbi
E. emilio.acerbi@unipr.it

Prof. Marino Belloni
E. marino.belloni@unipr.it

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Costantino Medori
E. costantino.medori@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Erasmus delegates

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Quality assurance manager

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Tutor students

Dott. Matteo Mezzadri
E. matteo.mezzadri@studenti.unipr.it