GEOMETRY 1A
cod. 1007183

Academic year 2019/20
1° year of course - First semester
Professor
Leonardo BILIOTTI
Academic discipline
Geometria (MAT/03)
Field
Formazione matematica di base
Type of training activity
Basic
56 hours
of face-to-face activities
6 credits
hub:
course unit
in ITALIAN

Learning objectives


The course aims, by means of frontal lessons, to provide knowledge and techniques of linear algebra for the purpuse of providing tools for resolving linear systems, diagonalising matrices and simply describing the behaviours of geometric bodies in the plane and in space. Applying knowledge and understandingThe student will be able to: i) solve systems of linear equations, ii) simple exercises of analytic geometry in space; operate on vectors and matrices; iii) diagonalize operators and matrices.Making judgments: the student must be able to understand the rightness of the results obtained by himself or by others.Communications skills:Through the frontal class and assistance of the teacher, the student acquires scientific vocabulary. At the end of the course, the student is expected to be able to communicate mathematical arguments.Learning skills:The student who has attended the course will be able to deepen is knowledge of linear algebra and vector spaces.

Prerequisites

- - -

Course unit content


A briefly introduction to the complex number. Vector and matrix calculus. Determinant and rank of a matrix. Linear systems. Real and complex vector spaces. Bases and dimension. Sum and direct sum of subspaces: Grasmann relation. Linear applications and associated matrices. and eigenvectors. Diagonalizability of a matrix. Bilinear forms and scalar products. Orthonormal bases. Real symmetrical matrices: diagonalizability. Orthogonal matrices and isometries. Coordination in the plane and in the space. Parametric and cartesian representation of stright lines and planes.Parallelism and orthogonality.

Full programme


Elements of analytic geometry of the 3-dimensional space. Parametric and cartesian equations Parametric and Cartesian of a straight line. Mutual position of two lines. Equation of a plane. Scalar product and distance. Wedge product and its fundamental properties. Real and complex vector spaces. Subspaces: sum and intersection. Linear combination of vectors: linear dependence/independence. Generators, bases and dimension of a vector space. Grassmann formula.Determinants: definition using the formulas of Laplace and fundamental properties. Binet theorem. Elementary operations of the row and column of a matrice. Calculation of the inverse matrix. Rank of a matrix. System of linear equations: Gauss-Jordan's theorem and Theorem of Rouche-Capelli. Linear applications. Definition of the kernel and of image, Dimension's theorem, matrix associated to a linear application and rule base change. Isomorphisms. Endomorphisms of a vector space:eigenvalues, eigenvectors and eigenspaces. Characteristic polynomial. Algebraic multiplicity and geometry of an eigenvalue. Diagonalizable endomorphisms.Scalar products. Orthogonal complement of a subspace. Process of Gram-Schmidt orthogonalization. The orthogonal group. Diagonalization of symmetric matrices: the spectral theorem. Positivity criterion for scalar products. Outline of the complex case.)

Bibliography


Marco Abate, Chiara De Fabritiis “Geometria analitica con elementi di algebra lineare", Francesco Capocasa e Costantino Medori ‘’Corso di Geometria e Algebra Lineare’’

Teaching methods


Privileged education mode is the frontal lesson that offered arguments from a formal point of view, accompanied by significant examples, applications and exercise. Exercises are proposed every week. The exercises are uploadoaded on the plattform Elly. The aim is to invites students to check theirselver the knowledge and ability. . Also the pdf files of the lessons are uploades on the platform Elly every week.

Assessment methods and criteria


Verification of learning takes place through a written test and an oral. In the written examination through the exercises proposed by the student must demonstrate that they possess the basic knowledge of linear algebra and analytical geometry. In the oral examination the student must be able to conduct its own demonstrations relating to the themes of the course using an appropriate language and mathematical formalism.. The student must register himselves on esse3 to do the written and oral exam. The duration of the written test is 1 hora and 45 minutes. The students that get an evalutaion equal or better that 18/30, they will admitt to the oral examination. The final evalutaion aries from the arithmetic average oof the written exam (or intermediate written tests) and the oral exam.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof. Emilio Acerbi
E. emilio.acerbi@unipr.it

Prof. Marino Belloni
E. marino.belloni@unipr.it

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Costantino Medori
E. costantino.medori@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Erasmus delegates

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Quality assurance manager

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Tutor students

Dott. Matteo Mezzadri
E. matteo.mezzadri@studenti.unipr.it