cod. 00012

Academic year 2018/19
3° year of course - Second semester
Academic discipline
Analisi matematica (MAT/05)
A scelta dello studente
Type of training activity
Student's choice
48 hours
of face-to-face activities
6 credits
course unit

Learning objectives

Students must demonstrate knowledge and understanding of advanced results of measure theory and real analysis.

In particular, within the program carried out, students must

1. exhibit solid knowledge and thorough conceptual understanding of the subject;

2. be able to produce rigorous proofs of results related to those examined in the course;

3. be able to evaluate coherence and correctness of results obtained by themselves or by others;

4. be able to communicate in a clear and precise way the contents of the course using the appropriate scientifical lexicon;

5. be able to access autonomously scientific books and articles on the subject.


Previous courses in algebra, topology and mathematical analysis.

Course unit content

Advanced measure theory and real analysis.

Full programme

1. Abstract measure theory and integration.
2. Positive Borel measures.
3. Complex measures and Radon-Nikodym theorem.
4. Lp spaces.
5. The fundamental theorem of calculus and AC functions.
6. Differentiaton of measures and integrals in R^N.
7. Hausdorff measures and self similar sets.


W. Rudin, "Real and complex analysis", 3nd Edition, McGraw-Hill Inc., New York 1987.

Teaching methods

Lectures (5 hours per week).

Assessment methods and criteria

The final exam consists of an oral examination.

Other information

- - -