cod. 1004213

Academic year 2017/18
1° year of course - Second semester
Academic discipline
Fisica matematica (MAT/07)
Discipline matematiche, informatiche e fisiche
Type of training activity
56 hours
of face-to-face activities
6 credits
hub: PARMA
course unit

Learning objectives

The course of Mathematics II and Exercises is designed to provide tools and mathematical methods useful for applications.
The theoretical treatment of the fundamental concepts will be followed by examples and exercises.

We expect that at the end of the course the students have the following abilities:
- to know the main properties of multi-variable functions, multiple integrals, series of functions and Fourier/Laplace transforms;
- to apply the correct tools to solve exercises;
- to express the contents in a clear way, even in the oral exam, owing to a formally correct mathematical language;
- to use the acquired knowledge to solve problems even in different frames (Physics, Chemical Physicis, and so on).


Matematica I ed Esercitazioni (Mathematics I and Exercises)

Course unit content

The course of Mathematics II and Exercises is designed to provide tools and mathematical methods useful for several applications.

Full programme

- Functions of several real variables: limits; continuity and differentiability; maxima and minima.

- Curves and surfaces: integrals.

- Series; functions series; Fourier series; power series: convergence properties and sum of the series.

- Fourier and Laplace transforms: definitions, properties, basic rules and applications to differential problems.

- Functions with complex variable: examples, and Cauchy-Riemann conditions.


M. Bramanti, C. D. Pagani, S. Salsa: Matematica (Calcolo Infinitesimale e Algebra lineare), Zanichelli Ed., in particular from Chapter 10 to Chapter 14

or, equivalently,

M. Bramanti, C. D. Pagani, S. Salsa: Analisi Matematica 2, Zanichelli Ed., in particular from Chapter 3 to Chapter 7.

Teaching methods

Lectures with theoretical explanations and several exercises

Assessment methods and criteria

The knowledge and understanding of the topics of the course will be verified through a written and oral exam.

- Written exam: exercises on the main arguments of the course (steady points of multi-variable functions, conservative vector fields, double or triple integrals, power series, differential problems solved owing to Fourier or Laplace transforms).

During the course there will be two written "intermediate exams" that, if both with a positive result, allow the students to do directly the oral exam.

- Oral exam: questions on the theoretical arguments of the course and on the methods used to solve the exercises.

Other information

- - -