Learning objectives
The course aims at providing to the students the knowledge of organic stereochemistry which allows them to understand the reactions of chirality transfer. New reactions will be presented to increase the student preparation in organic chemistry. Different kinds of reactions will be presented, also with attention to stereoselectivity.
In addition, the fundamental principles of green chemistry will be discussed in order to evaluate the eco-efficiency of a chemical process.
Particular attention will be always devoted to discussion of results from the literature and examples of industrial application.
Prerequisites
- - -
Course unit content
Role of chirality in nature. Organic stereochemistry: review of the molecular chirality concepts due to center, axis, plane of chirality, elicity as well atropoisomerism. Chirooptical methods: polarimetry; circular dicroism (CD) and its application in conformational and configurational studies (octant rule). Study of dynamic phenomena by NMR spectroscopy. Time scale in NMR, IR and UV spectroscopies. Conformational analysis by NMR: thermodynamic and kinetic aspects.
Determination of the enantiomeric composition by chromatographic and NMR methods. Stereoselective and stereospecific reactions. 1,2-Concerted rearrangements involving C, O and N atoms. Diastereo- and enantioselective syntheses. Aldolic condensations and Diels-Alder reactions. Pericyclic reactions. Epoxidation reactions and use of Sharpless as well as Jacobsen-Katsuki chiral catalysts. Chirality amplification. Origin of chirality in nature. Chirality and biological effects. Additional organic reactions (e.g. click chemistry). Heterogeneous catalysts for enantioselective reactions. Supported catalysts. Functionalisation of solid supports with (chiral) metal complexes and biomolecules for enantioselective processes.
Sustainable development and eco-compatibility of chemical processes. The twelve principles of the Green Chemistry. New reaction media: water, supercritical fluids, ionic liquids. Heterogeneous catalysis. Examples of environmental friendly industrial processes and comparison with traditional ones. Introduction to the stucture-reactivity relationship.
Full programme
Role of chirality in nature. Organic stereochemistry: review of the molecular chirality concepts due to center, axis, plane of chirality, elicity as well atropoisomerism. Chirooptical methods: polarimetry; circular dicroism (CD) and its application in conformational and configurational studies (octant rule). Study of dynamic phenomena by NMR spectroscopy. Time scale in NMR, IR and UV spectroscopies. Conformational analysis by NMR: thermodynamic and kinetic aspects.
Determination of the enantiomeric composition by chromatographic and NMR methods. Stereoselective and stereospecific reactions. 1,2-Concerted rearrangements involving C, O and N atoms. Diastereo- and enantioselective syntheses. Aldolic condensations and Diels-Alder reactions. Pericyclic reactions. Epoxidation reactions and use of Sharpless as well as Jacobsen-Katsuki chiral catalysts. Chirality amplification. Origin of chirality in nature. Chirality and biological effects. Additional organic reactions (e.g. click chemistry). Heterogeneous catalysts for enantioselective reactions. Supported catalysts. Functionalisation of solid supports with (chiral) metal complexes and biomolecules for enantioselective processes.
Sustainable development and eco-compatibility of chemical processes. The twelve principles of the Green Chemistry. New reaction media: water, supercritical fluids, ionic liquids. Heterogeneous catalysis. Examples of environmental friendly industrial processes and comparison with traditional ones. Introduction to the stucture-reactivity relationship.
Bibliography
- F. A. Carey, R. A. Sundberg “Advanced Organic Chemistry” Springer;
- E.L. Eliel, S.H. Wilen “Stereochemistry of Organic Compounds” J.Wiley & Sons;
- R.A. Sheldon,I.Arends, U. Hanefeld- “Green Chemistry and Catalysis”, Wiley-VCH; - D.E. De Vos , I.F.J. Vankelecom, P.A. Jacobs - “Chiral Catalyst Immobilization and Recycling”, Wiley-VCH
•
Literature references on various topics will be given to allow deeper study.
Teaching methods
Transparencies and Power point slides will be employed and a copy will be given in advance to the students. References of original papers are furnished to permit a deeper study.
Assessment methods and criteria
Oral examination
Other information
The teacher is available to the student for any clarifications or
explanations of the topics covered during the course.
2030 agenda goals for sustainable development
- - -