CALCULUS 2 PART. 1
cod. 1003931

Academic year 2014/15
2° year of course - First semester
Professor
Pietro CELADA
Academic discipline
Analisi matematica (MAT/05)
Field
Formazione teorica
Type of training activity
Characterising
56 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in - - -

Integrated course unit module: CALCULUS 2

Learning objectives

Knowledge and understanding.
Students must achive thorough conceptual understanding of the theoretical foundations of multivariable differential and integral calculus as well as computational fluency.

Applying knowledge and understanding.
Students must be able to apply the forementioned notions to solve medium level problems related to the field of study and to understand how the forementioned notions can be used for solving problems in a more applied context.

Making judgements.
Students must be able to evaluate coherence and correctness of results obtained by themselves or by others.

Communication skills.
Students must be able to communicate in a clear, precise and complete way mathematical statements in the field of study, also in a broader context than mere calculus.

Prerequisites

Differential and integral calculus for functions of one real variable. Linear algebra.

Course unit content

Multivariable differential and integral calculus.

Full programme

1) Preliminaries of linear algebra and topology.

Linear algebra.
Vectors spaces. Norms and scalar products. Cauchy-Schwarz inequality. Linear mappings and matrices. Eigenvalues and diagonalization of symmetric matrices. Quadratic forms.

Topology of R^N.
Interior, cluster and boundary points. Open and closed sets. Compact sets and Heine-Borel theorem. Connected stes.

2) Multivariable differential calculus.

Limits and continuity.
Limits of multivariable functions. Continuous functions.

Differentiable functions.
Directional and partial derivatives. Differentiable functions. The gradient and its geometrical meaning. Tangent planes, tangent and normal vectors. Chain rule. Functions of class C^1. The inverse function theorem. Diffeomorphisms and changes of variables.

Functions of class C^k.
Higher order differentiable functions. Functions of class C^k. Schwarz's theorem. Taylor's formula. Lagrange's reminder.

Optimization of multivariable functions.
Local and global maxima and minima, saddle points. Necessary and sufficient conditions for optimality.

Manifolds in R^N.
The implicit function theorem. Manifolds in R^N. Lagrange's multiplier.

3) Curves and vector fields.

Curves.
Oriented curves. Length of a curve. Homotopy of curves and simply connected stes.

Vector fields.
Integral along a curve. Conservative vector fields and potentials.

4) Multiple integrals

Integration.
Integration of bounded functions over compact rectangles. Properties of the integral. Jordan regions. Volume of a Jordan region. Integration over Jordan regions. Iterated integrals.

Change of variables.
Change of variables formula for linear maps. Jacobian of linear maps. Change of variable formula for multiple integrals. Polar and cylindrical coordinates.

Bibliography

Lecture notes and material from the following textbooks:

1) G. Prodi "Lezioni di Analisi Matematica 2", Bollati Boringhieri, Torino 2011
2) A. Browder "Mathematical Analysis. An introduction", Springer, New York 1996
3) W. Fleming "Functions of several variables", Springer, New York 1977
4) W. Rudin "Principles of Mathematical Analysis", McGraw--Hill, New York 1976
5) J. L. Taylor "Foundations of analysis", American Mathematical Society, Providence RI 2012.

Teaching methods

Lectures and discussion section.

Assessment methods and criteria

Exams test for thorough conceptual understanding of theoretical results and computational fluency. Consist of a written text followed by a colloquium.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof. Emilio Acerbi
E. emilio.acerbi@unipr.it

Prof. Marino Belloni
E. marino.belloni@unipr.it

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Costantino Medori
E. costantino.medori@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Erasmus delegates

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Quality assurance manager

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Tutor students

Dott. Matteo Mezzadri
E. matteo.mezzadri@studenti.unipr.it