TELECOMMUNICATION NETWORKS
cod. 1002530

Academic year 2024/25
3° year of course - Second semester
Professors
Academic discipline
Telecomunicazioni (ING-INF/03)
Field
Ingegneria delle telecomunicazioni
Type of training activity
Characterising
48 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

The course aims at introducing the general aspects of communications networks, providing common models and basic knowledge of communication protocols and architectures. The main technologies and protocols currently used in communications networks will be deeply analyzed, with particular focus on the Internet.
At the end of the course the student will be able to apply the acquired knowledge in order to analyze and design architectures and protocols of a communication network.

Prerequisites

Prerequisites are not required. However, it may be useful to have attended basic telecommunications and programming courses.

Course unit content

Network architectures and protocols. Network and transport protocols in Internet. Tools for the analysis and the design of telecommunications networks.

Full programme

- Introduction to the course of Telecommunication Networks. Introduction to networks: definitions and classifications. Branches, nodes and topologies. Standardization organisms.
- Information types: user, control and management. Network performance: end-to-end delay, errors and losses. Information integrity and temporal transparency.
- Functions and protocols in data communication. Protocol architectures. Management of information units in a protocol architecture. Interconnected systems.
- OSI protocol architectures and Internet. Communication models based on involved entities and on information transfer modes.
- Delimitation: bit and char staffing. Sequence control. Error correction: error detection codes and automatic retransmission techniques.
- Multiplexing. Time division multiplexing (TDM) and frequency division multiplexing (FDM) techniques. Medium access control function. Random and fixed medium access.
- Local area network (LAN): sub-networking protocols. Ethernet networks and wireless LAN. Medium access control protocols in wired and wireless networks.
- Introduction to Internet and to its architecture. Internet Protocol (IP): operational principles and fragmentation function.
- Addressing in IP protocol. Subnetting and supernetting in IP addressing.
- Direct and indirect routing in IP protocol. Routing tables. Dynamic routing protocols: Routing Information Protocol (RIP) and Open Shortest Path First (OSPF). Autonomous systems.
- Internet Control Message Protocol (ICMP) and Address Resolution Protocol (ARP). Dynamic Host Configuration Protocol (DHCP) and Point-to-Point Protocol (PPP). Domain name system (DNS).
- Transport layer functionalities in the Internet. Addressing and ports. User Datagram Protocol (UDP). Transmission Control Protocol (TCP). Opening and tearing down connections in TCP. Network Address Translation (NAT) techniques.
- Error control, flow control and congestion control function in TCP protocol. Performance comparison between UDP and TCP.
- IPv6 protocol: introduction and packet format. Addressing in IPv6. Management of transition from IPv4 to IPv6.
- Advanced networking applications: Software-Defined Networking (SDN) and Internet of Things (IoT).
- Laboratory activities on the topics discussed in the theory part, with applications and scripts development through well-known software libraries.

Bibliography

Lectures will be based on material produced by the instructor and available to the students. Some reference books are the following:
[1] B. A. Forouzan, "Reti di calcolatori e Internet", 2008, McGraw-Hill
[2] A. Pattavina, "Reti di telecomunicazione - Networking e Internet", 2007, McGraw-Hill
[3] A. S. Tanenbaum, D.J. Wetherall, "Reti di calcolatori", 2011, Pearson, Prentice Hall
[4] J. F. Kurose, K. W. Ross, "Internet e Reti di calcolatori", 2008, Pearson

Teaching methods

The course is divided into theoretical lessons and classroom and/or laboratory exercise sessions, to acquire practice with proper software tools.

Assessment methods and criteria

It is foreseen the use of on-going evaluations (midterm and final) in substitution of the written test (regular exam). An additional oral exam may be requested by the instructor. It is also foreseen a project development based on lab activities.

Other information

Related information and material will be published on a properly prepared course website.

2030 agenda goals for sustainable development

Industry, innovation and infrastructures.

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.ingarc@unipr.it 

Quality assurance office

Quality Assurance Manager:
Elena Roncai
T.+39 0521 903663
E. office dia.didattica@unipr.it
E. manager elena.roncai@unipr.it

 

Course President

Andrea Prati
E. andrea.prati@unipr.it

Faculty advisor

Michele Tomaiuolo
E. michele.tomaiuolo@unipr.it

Carrier guidance delegate

Guido Matrella
E. guido.matrella@unipr.it

Tutor Professors

Michele Amoretti
E. michele.amoretti@unipr.it
Michele Tomaiuolo
E. michele.tomaiuolo@unipr.it

 

Erasmus delegates

Luca Consolini
E. luca.consolini@unipr.it

Quality assurance manager

Michele Amoretti
E. michele.amoretti@unipr.it

Tutor students

PELLEGRINO Mattia
E. mattia.pellegrino@unipr.it
PICCININI Mirco
E. mirco.piccinini@unipr.it
CIPPELLETTI Alberto
E. mirco.piccinini@unipr.it
BOTTI Filippo
E. filippo.botti2@studenti.unipr.it
SACCANI Francesco
E. francesco.saccani@unipr.it
MEZZADRI Matteo
E. matteo.mezzadri3@unipr.it
PENZOTTI Gabriele
E. gabriele.penzotti@unipr.it
TRIMIGNO Giuseppe
E. giuseppe.trimigno@studenti.unipr.it
RICCIARDI Roberto
E. roberto.ricciardi@studenti.unipr.it