VARIATIONAL MEYHODS IN ANALYSIS
cod. 1007190

Academic year 2018/19
1° year of course - First semester
Professor
Massimiliano MORINI
Academic discipline
Analisi matematica (MAT/05)
Field
Attività formative affini o integrative
Type of training activity
Related/supplementary
72 hours
of face-to-face activities
9 credits
hub:
course unit
in ITALIAN

Learning objectives

The course aims at introducing to some of the fundamentals topics and techniques of the Calculus of Variations and to their applications to other branches of Mathematical Analysis. Classes will be aimed at stimulating a deeper understanding of the ideas and methods of mathematical thinking.
The main objectives are to allow the student to:

1) acquire a solid knowledge of the fundamental concepts of the Calculus of Variations and Elliptic Partial Differential Equations and develop an understanding of the language, techniques and contents of a wide spectrum of modern mathematical theories;

2) understand advanced texts and research articles in Mathematics;

3) to apply the theoretical advanced tools learned during the course to solve problems and to analyze new mathematical models; ; develop that propensity to research required to undertake a possible PhD path;

4) evaluate the consistency and correctness of mathematical demonstrations and reasoning; analyze and propose appropriate resolution strategies to solve a given problem;

5) improve their ability to communicate their knowledge in a clear, precise and formally rigorous way;

6) develop a flexible mentality that allows her/him to easily adapt to face new problems.

Prerequisites

Measure Theory and basic Functional Analysis.

Course unit content

-Direct Methods in the Calculus of Variations and their application to Partial Differential Equations (PDE).
-Introduction to Regularity Theory: Campanato's approach, De Giorgi-Nash Theorem and their application to the study of the regularity of minimizers of some integral functionals of the Calculus of Variations.
-Introduction to Critical Point Theory: the Mountain Pass Theorem and its applications to PDE.
-Introduction to Gamma-convergence, examples and applications.
-Evolutions problems:the Minimizing Movements Method.
Complements (as time permits):
- Vectorial Calculus of Variations.
-Examples of functionals defined on spaces of discontinuous functions.

Full programme

- - -

Bibliography

-"Partial Differential Equations" by L. C. Evans
-"An introduction to Gamma-convergence" byi G. Dal Maso
-"Gamma-convergence for beginners" by A. Braides

Teaching methods

Lectures at the blackboard

Assessment methods and criteria

Oral examination.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Segreteria studenti

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
Office E. smfi.didattica@unipr.it
Manager E.giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

 

Erasmus delegates

Prof. Leonardo Biliotti
E. leonardo.biliotti@unipr.it

Quality assurance manager

Prof.ssa Alessandra Aimi
E. alessandra.aimi@unipr.it

Internships

Prof. Costantino Medori
E.
 costantino.medori@unipr.it

Tutor students

Dott.ssa Fabiola Ricci
E. fabiola.ricci1@studenti.unipr.it