MODELS OF PHYSICAL MATHEMATICS
cod. 18975

Academic year 2011/12
3° year of course - Second semester
Professor
Academic discipline
Fisica matematica (MAT/07)
Field
Formazione modellistico-applicativa
Type of training activity
Characterising
72 hours
of face-to-face activities
9 credits
hub: PARMA
course unit
in - - -

Learning objectives

Introduction to mathematical modelling through differential equations

Prerequisites

- - -

Course unit content

FIRST PART:
Sturm Liouville problems. Eigenvalues and eigenfunctions.

Introduction to the Theory of Distributions.

Non-homogeneous boundary problems and Green's function.

Classification of linear second order PDE's. Cauchy problems.

First order quasi-linear PDEs. Method of characteristics.

Second order quasi-linear PDEs; Jacobi's method.
Weak solutions.

SECOND PART:
Dynamical Systems. Equilibria and Stability. Lyapunov Methods.

Linear and nonlinear models in Mechanics.

Mathematical models in population dynamics.

Van der Pol equation.

Bifurcation theory, Hopf theorem, limit cycles.

Poincarè-Bendixon theorem.

Lorenz model and chaos.

Discrete dynamical systems. Feigenbaum map.

Full programme

- - -

Bibliography

G.Spiga, Problemi matematici della Fisica e dell'Ingegneria, PITAGORA,Bologna;

A.N.Tichonov, A.A.Samarskij, Equazioni della Fisica Matematica, MIR,Mosca;

F.G.Tricomi,Equazioni differenziali,EINAUDI, Torino;

F.G.Tricomi, Istituzioni di Analisi Superiore, CEDAM,Padova.

G.L. CARAFFINI, M. IORI, G. SPIGA, Proprietà elementari dei sistemi dinamici, Appunti per il corso di Meccanica Razionale, UNIVERSITA' DEGLI STUDI DI PARMA, a.a 1998-99;

G. BORGIOLI, Modelli Matematici di evoluzione ed equazioni differenziali, Quaderni di Matematica per le Scienze Applicate/2, CELID, TORINO, 1996;

R. RIGANTI, Biforcazioni e Caos nei modelli matematici delle Scienze applicate, LEVROTTO & BELLA TORINO, 2000;

M.W HIRSCH, S. SMALE, Differential Equations, Dynamical Systems and Linear Algebra, ACADEMIC PRESS, NEW YORK, 1974;

J.D. MURRAY, Mathematical Biology, SPRINGER-VERLAG, NEW YORK, 1989;

J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, SPRINGER-VERLAG, NEW YORK, 1983;

M. SQUASSINA, S. ZUCCHER, Introduzione all'analisi qualitativa delle equazioni differenziali ordinarie (ebook), APOGEO, 2008.

Teaching methods

Lectures and exercises

Assessment methods and criteria

Oral exam

Other information

- - -