MOLECULAR SPECTROSCOPY
cod. 00913

Academic year 2011/12
1° year of course - First semester
Professor
Academic discipline
Chimica fisica (CHIM/02)
Field
Discipline chimiche inorganiche e chimico-fisiche
Type of training activity
Characterising
48 hours
of face-to-face activities
6 credits
hub:
course unit
in - - -

Learning objectives

Acquisition of the basic concepts to study time-dependent molecular processes. Linear radiation-matter interaction treated in the perturbation theory and linear response theory. The principles of linear optical spectroscopy (elettronic and vibrationa). The basic principles of NMR.

Prerequisites

- - -

Course unit content

A few very basic concepts:
* the electromagnetic spectrum
* measuring an absorption spectrum: absorbance
* Fourier transforms

Elettromagnetic radiation:
* classic and quantistic description
* radiation-matter interaction

Time-dependent perturbation theory
* general discussion
* absorbance and emission of monochromatic radiation
* electric dipole approximation
* absorbance, spontaneous and stimulated emission

Linear response theory
* responnce and susceptibility functions
* steady-state and time-resolved experiments
* density matrix
* active and passive processes, Kramers-Krönig relations
* complex dielectric constant: refractive index and extinction coefficient
* microscopic formulation of teh response and susceptibility functions
* relaxation and bandshapes

Optical spectroscopy
* the adiabatic approximation
* selection rules
* vibrational spectroscopy: normal coordinates, internal coordinates, group frequencies, FT-IR and Raman spectroscopies (basic)
* electronic spectroscopy: absorption, Frank-Condon principle and band-shapes, fluorescence, Kasha rule, fluorescence excitation, phosphorescence. Organic chromophores, solvatochromy.
* Optical spectroscopy with polarized light: polarizability tensor. ORD and CD spectra

Magnetic spettroscopy
* the basic NMR and ESR experiments
* solution NMR: chemical shift and J-coupling
* FT-NMR: basic experiment and some more refined measurements
* systems of many non-interacting spins, density matrices and product operators
* the spin-echo sequence
* systems of many interacting spins, density matrices and product operators
* the spin-echo sequence for interacting spins
* an introduction to 2D- NMR

Full programme

- - -

Bibliography

G.C.Schatz, M.A.Ratner, Quantum Mechanics in Chemistry, Dover (2002)
J. McHale Molecular Spectroscopy
S. Fischer, P. Scherer, Theoretical Molecular Biophysics, Springer (2010)
M.H. Levitt, Spin Dynamics, Wiley
lecture notes available to the students on specific topics

Teaching methods

class teaching

Assessment methods and criteria

final oral exam

Other information

- - -