GEOMETRIA 1 - MOD 2
cod. 1010761

Anno accademico 2024/25
1° anno di corso - Secondo semestre
Docente
Costantino MEDORI
Settore scientifico disciplinare
Geometria (MAT/03)
Ambito
Formazione matematica di base
Tipologia attività formativa
Base
84 ore
di attività frontali
9 crediti
sede: -
insegnamento
in ITALIANO

Modulo dell'insegnamento integrato: GEOMETRIA 1

Obiettivi formativi

Conoscenze e capacità di comprendere: Il corso intende fornire le conoscenze di base della teoria spettrale degli operatori su uno spazio euclideo reale o complesso, della teoria delle forme bilineari e sesquilineari, dei prodotti scalari e hermitiani, e delle forme su uno spazio euclideo. Lo studente dovrebbe essere in grado di leggere e comprendere in modo autonomo risultati di Geometria Analitica e Algebra Lineare anche consultando monografie scientifiche.

Competenze: Lo studente dovrebbe saper risolvere esercizi di Geometria Analitica e Algebra Lineare anche di carattere non elementare.

Autonomia di giudizio: Lo studente dovrebbe essere in grado di costruire e sviluppare argomentazioni logiche con una chiara identificazione di assunti e conclusioni; inoltre dovrebbe saper riconoscere dimostrazioni corrette e individuare ragionamenti fallaci.

Prerequisiti

- - -

Contenuti dell'insegnamento

Spazio duale e trasposta di un'applicazione lineare. Spazi euclidei. Isometrie lineari e operatori unitari. Funzionali lineari e operatori aggiunti. Teoria spettrale degli operatori su uno spazio euclideo: operatori autoaggiunti e normali. Forme bilineari e sesquilineari. Prodotti scalari e hermitiani. Forme su spazi euclidei. Quadriche. Geometria affine e proiettiva (cenni).

Programma esteso

- - -

Bibliografia

Serge Lang. Algebra lineare (Terza edizione). Bollati Boringhieri, 2014.
Paolo De Bartolomeis. Algebra lineare. La Nuova Italia, 1993.

Altre letture:
Ciro Ciliberto. Algebra lineare. Bollati Boringhieri, 1994.
Marco Abate. Geometria. McGraw-Hill, 1996.
Mauro Nacinovich. Elementi di geometria analitica. Liguori Editore, 1996.
Edoardo Sernesi: Geometria 1. Bollati Boringhieri, 2000.

Metodi didattici

Gli argomenti teorici del corso sono presentati tramite lezioni frontali e
corredati da esempi significativi, applicazioni, e numerosi esercizi.
Durante il corso vengono assegnati esercizi che vengono poi discussi e
commentati durante le ore di lezione.

Modalità verifica apprendimento

L'esame consta di una prova scritta, che prevede la soluzione di alcuni esercizi, e di una prova orale sugli argomenti teorici e le applicazioni
discussi durante il corso. L’accesso alla prova orale e’ sconsigliato nel caso in cui la prova scritta risulti insufficiente.
La votazione finale risulta essere una media ponderata tra la votazione della part scritta e di quella orale.

Altre informazioni

Parte del materiale didattico potrebbe essere presente su Elly.