Obiettivi formativi
Al termine del corso lo studente sarà in grado di:
- analizzare le proprietà geometriche di curve e superfici differenziabili nello spazio;
- comprendere i passaggi logici delle dimostrazioni;
- esprimere con rigore i concetti appresi.
Prerequisiti
Il corso utilizza nozioni di algebra lineare, topologia e analisi, ovvero gli argomenti svolti nei corsi precedenti di Geometria e di Analisi.
Contenuti dell'insegnamento
Geometria delle curve e delle superfici nello spazio.
Programma esteso
Curve differenziabili nello spazio: definizione ed esempi. Lunghezza di una curva. Riparametrizzazione di una curva. Curve regolari. Formule di Frenet. Torsione e curvatura di una curva regolare. Torsione di una curva piana. Teorema fondamentale della teoria locale delle curve.
Quadriche: definizione ed esempi. Parametrizzazione. Piano tangente. Classificazione.
Superfici regolari: definizione di superficie regolare nello spazio tridimensionale. Superfici grafico di una funzione. Superfici preimmagine di un valore regolare. Cambi di coordinate e funzioni lisce su superfici. Spazio tangente e differenziale di una funzione. Prima forma fondamentale e distorsione delle misure. Caratterizzazione della sfera tra le superfici regolari compatte. Campo normale e orientabilità.
Geometria della mappa di Gauss: seconda forma fondamentale e curvatura. Significato geometrico della seconda forma fondamentale. Regolarità delle curvature. Hessiano di una funzione liscia. Lemma di Hilbert. Superfici di rotazione. Superfici rigate e sviluppabili. Superfici minime.
Geometria intrinseca: isometrie. Parametrizzazioni conformi e parametrizzazioni che preservano le aree. Theorema Egregium. Derivata covariante e trasporto parallelo. Geodetiche. Geodetiche sulle superfici di rotazione. Le geodetiche come curve di minima distanza. Superfici a curvatura di Gauss costante. Teorema di Gauss-Bonnet.
Bibliografia
Il corso segue essenzialmente il libro:
* M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Dover Publications, 2016.
Per approfondimenti si consigliano anche:
* M. Abate, F. Tovena, Curve e Superfici, Unitext, Springer, Milano, 2016.
* M. Abate, C. de Fabritiis, Geometria analitica con elementi di algebra lineare, McGraw-Hill Education, 2015.
* S. Kobayashi, Differential Geometry of Curves and Surfaces, Springer 2019.
Metodi didattici
Principalmente lezioni frontali in aula (*). Alla teoria verranno affiancati esempi significativi e verranno proposti esercizi per consolidare le nozioni trattate.
(*) In base all'evolversi dell'emergenza sanitaria le lezioni potranno essere svolte a distanza o in modalità mista a seconda delle linee guida fornite dall'ateneo.
Modalità verifica apprendimento
L'esame finale, comprendente il primo e il secondo modulo del corso di Geometria 2, consiste in una prova scritta e in una prova orale. In luogo della prova scritta, gli studenti possono sostenere due prove intermedie. La valutazione delle prove intermedie e della prova scritta è così articolata: gli studenti che totalizzano un punteggio tra 24 e 30, conseguono A.
Gli studenti che totalizzano un punteggio tra 18 e 23, conseguono B. Gli studenti che totalizzano un punteggio inferiore a 18, conseguono C. La prova scritta si intende superata quando si consegue almeno B. Gli studenti che conseguono almeno B nelle due prove intermedie accedono direttamente alla prova orale, che può essere svolta in qualunque appello dell'anno accademico di riferimento. La prova orale consiste nella dimostrazione di teoremi significativi e/o nell'esposizione di argomenti, definizioni, trattati nelle lezioni. Qualora a causa del perdurare dell’emergenza sanitaria fosse
necessario integrare con la modalità a distanza lo svolgimento degli esami di profitto si procederà come segue:
prove scritte a distanza;
interrogazioni orali a distanza.
Altre informazioni
- - -