Obiettivi formativi
L’obiettivo di questo corso è di introdurre i concetti fondamentali di una ampia varietà di temi inerenti l’acustica, con una combinazione bilanciata di lavoro teorico, misure sperimentali, simulazioni numeriche e programmazione.
Gli studenti che avranno completato con successo questo corso saranno in grado di:
- spiegare la teoria di base di un numero di argomenti relativi all’acustica, come descritti nel programma qui sopra;
- comprendere ed essere in grado di utilizzare il linguaggio tecnico usato nella letteratura scientifica sull’acustica;
- applicare concetti di ingegneria acustica e formule di calcolo per la soluzione di vari problemi di base in acustica;
- sviluppare e applicare una varietà di algoritmi di processamento dei segnali acustici e audio (utilizzando MATLAB);
- usare le funzioni di base di alcuni software per la simulazione acustica e per il processamento del segnale;
- effettuare alcune misure acustiche;
- interpretare i risultati di misure acustiche e diagrammi relativi a fenomeni acustici.
Prerequisiti
Nessuno
Contenuti dell'insegnamento
Acustica Fisica:
Definizione delle grandezze, meccanismo di propagazione di perturbazioni meccaniche in un mezzo elastico. Pressione sonora e velocità delle particelle. Velocità dell’onda sonora.
Equazione delle onde.
Intensità acustica e densità dell’energia. Campi sonori propaganti e stazionari.
Psicoacustica:
Meccanismi fisiologici e psicologici della percezione del suono da parte dell'uomo.
La scala logaritmica dei decibel (dB), operazioni elementari su grandezze espresse in dB. Curve di ponderazione in frequenza.
Fenomeni di mascheramento nel tempo e nella frequenza.
Algoritmi di compressione audio basati su principi psicoacustici.
Propagazione del suono:
Onde piane, onde sferiche, onde stazionarie. Fenomeni di riflessione ed assorbimento.
Propagazione del suono in ambiente esterno.
Acustica architettonica: campo riverberante, qualità del suono nelle sale da concerto e teatri d'opera, e parametri acustici a norma ISO 3382. Metodi avanzati per la misurazione risposta all'impulso.
Digital Signal Processing applicate all'audio e acustica:
Fondamenti di analisi spettrale e trasformata di Fourier.
Campionamento dei segnali.
La DFT e l’algoritmo FFT. Convoluzione.
FIR e IIR, calcolo numerico di filtri inversi.
Controllo attivo del rumore.
Auralizzazione.
Acustica virtuale e audio 3D.
Elettroacustica:
Trasduttori (microfoni, altoparlanti).
Dispositivi per il processamento analogico e digitale del segnale acustico: amplificatori, equalizzatori, riverberi, compressori, etc..
Strumentazione ed apparecchiature per misure acustiche: fonometro, analizzatore di spettro, sistema di misura delle risposte all’impulso. Strumentazione virtuale su PC, software per misure acustiche, con esercitazioni pratiche in laboratorio.
Tecniche di simulazione numerica della propagazione del suono:
Fondamenti del metodo agli elementi finiti, boundary element methods e ray tracing.
Programma esteso
Il corso di Acustica Applicata e' un corso introduttivo ad un settore scientifico e tecnologico in rapidissimo sviluppo, che offre grandi potenzialità occupazionali, e che coinvolge aree disciplinari apparentemente molto diverse: architettura, ingegneria strutturale, fisiologia, psicologia, statistica, fisica, elettronica, meccanica delle vibrazioni, fluidodinamica, elaborazione numerica del segnale, telecomunicazioni, elettronica, misure, igiene del lavoro, musica, musicologia, realtà virtuale.
Stante la sua natura multidisciplinare, il Corso di Acustica Applicata e' frequentato da studenti di vari corsi di laurea (praticamente tutte le branche di Ingegneria, ma partecipano anche alcuni allievi di Architettura). Ovviamente in un corso di 6 CFU si riesce a fornire solo la base metodologica della materia, che deve essere poi approfondita in ulteriori corsi.
Bibliografia
I testi raccomandati per una prima introduzione alla materia sono:
P. Fausti: Acustica in Edilizia , Rockwool, Italy, Milan, 2005 (free download in PDF format)
In Italian
R. Spagnolo: Acustica: Fondamenti e applicazioni, UTET Università, 2015, ISBN: 9788860084460
T. D. Rossing (ed.): Springer Handbook of Acoustics, Springer Science+Business Media, New York, 2007
L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders: Fundamentals of Acoustics, Wiley & Sons, 2000
F. Fahy: Foundations of Engineering Acoustics, Academic Press, 2000,
ISBN: 9780122476655
Metodi didattici
Il corso consta di un combinazione di lezioni frontali e workshop/laboratori. La teoria alla base dei concetti trattati in questo corso verrà spiegata durante le lezioni frontali. Dimostrazioni pratiche o con l’ausilio di computer verranno spesso utilizzate durante le lezioni come metodo per mostrare gli aspetti pratici di questa disciplina.
Verranno tenuti anche laboratori e workshop pratici, col supporto di computer o sistemi di misura, in modo che gli studenti acquisiscano esperienza con simulazioni numeriche e signal processing e coi metodi di misura.
Verranno fatti test in classe come verifica formativa e sommativa dell’apprendimento, al fine di monitorare i progressi degli studenti.
Modalità verifica apprendimento
La verifica dell’apprendimento consta di due distinte prove:
1) un esame scritto, costituito da un certo numero di esercizi. Alcuni studenti possono essere esentati dalla prova scritta, sulla base dei risultati conseguiti durante i test in classe.
2) Esame orale, che verte principalmente su argomenti teorici, ed a cui si accede solo dopo aver superato la prova scritta.
Altre informazioni
http://www.angelofarina.it/Acoustics-2019.htm