STATISTICA MEDICA
cod. 21945

Anno accademico 2014/15
1° anno di corso - Secondo semestre
Docente
Settore scientifico disciplinare
Statistica medica (MED/01)
Ambito
"discipline generali per la formazione dell'odontoiatra"
Tipologia attività formativa
Base
28 ore
di attività frontali
4 crediti
sede: -
insegnamento
in - - -

Modulo dell'insegnamento integrato: SCIENZE COMPORTAMENTALI E METODOLOGIA SCIENTIFICA

Obiettivi formativi

Il modulo di Statistica Medica si pone l'obiettivo di introdurre lo studente alla logica del pensiero statistico e alla sua applicazione nella pratica reale. L'esposizione degli argomenti sarà orientata a problemi concreti di analisi e di ricerca in particolar modo tratti dalla letteratura medica.
Prendendo come inizio la moltitudine di informazioni da cui siamo investiti quotidianamente, il corso si propone di fornire allo studente, in modo semplice, gli strumenti statistici necessari per descrivere e analizzare i dati, estrarre dai dati informazioni utili e prendere decisioni consapevoli.
Verrà data particolare enfasi al ragionamento statistico, all'interpretazione e al processo decisionale, a tale fine si insisterà più sulla comprensione concettuale che sul calcolo meccanico, anche alla luce dell'ampia scelta di software disponibile per l'analisi. La teoria verrà esplicitata mediante esercizi pratici e casi didattici.
L’obiettivo finale del corso sarà pertanto che lo studente apprenda il “saper fare” oltre che “il conoscere”.

Prerequisiti

- - -

Contenuti dell'insegnamento

La prima parte del corso introdurrà la logica della pianificazione statistica e del disegno sperimentale.
Verranno introdotti o richiamati i concetti di calcolo delle probabilità e calcolo combinatorio che serviranno nel seguito del corso. In questa fase verranno trattate le principali distribuzioni di probabilità tra cui la distribuzione binomiale, la distribuzione di Poisson e le distribuzioni Normale e Normale standard.

Nella seconda parte del corso verranno affrontati i metodi della statistica descrittiva. Verrà mostrato come riconoscere la tipologia dei dati e come riassumerli in opportuni indici.
Lo studente apprenderà come calcolare le misure di posizione (media, mediana, moda), variabilità (varianza, deviazione standard), il coefficiente di variazione (CV) , i percentili e il loro uso.

Nella parte finale del corso verrano trattati i principi generali dell’inferenza statistica.
Verrano introdotti concetti di distribuzione campionaria, errore di I e II tipo, potenza di un test e curva operativa. Verranno quindi trattati :
test parametrici - test t di Student, ANOVA a 1 e 2 criteri di classificazione.
test non parametrici : - test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Regressione multipla, regressione logistica.

Programma esteso

Introduzione : statistica medica e discipline affini. La logica e la pianificazione statistica. Cenni di calcolo combinatorio: permutazioni, disposizioni, combinazioni. Applicazioni.
Cenni di calcolo delle probabilita' : probabilita' semplice e composta, teorema di Bayes.
Odds. Odds ratios. Likelihood ratios. applicazioni.
Distribuzioni di probabilita' : distribuzione binomiale, distribuzione di Poisson, distribuzione Normale e Normale standard. Tabelle e loro uso.
Come riassumere i dati. Scale di misura.
Misure di posizione, ordine e variazione. Indici di tendenza centrale, media, mediana, moda.
Indici di variabilita', varianza, deviazione standard, CV. Percentili e loro uso.
Principi generali della inferenza statistica. La distribuzione campionaria. Ipotesi e test di ipotesi. Errore di I e II tipo. Potenza di un test e curva operativa.
Test parametrici : test t di Student, Analisi della varianza ad 1 e 2 criteri di classificazione. Test non parametrici : test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Regressione lineare e correlazione. Regressione multipla. Regressione Logistica.

Bibliografia

1) Appunti delle lezioni
2) Stanton A. Glantz : Statistica per discipline Bio-mediche - ed. McGraw-Hill
3) Sidney Siegel, N. John Castellan Jr. : Statistica non parametrica - ed. McGraw-Hill
4) Risorse e link da Internet

Metodi didattici

Durante le lezioni frontali verranno illustrati e commentati gli argomenti contenuti nel programma del modulo. Al termine della teoria relativa ad ogni argomento seguiranno esercizi che ne illustreranno l’applicazione in pratica. Verrà descritto il procedimento e l’esecuzione passo passo dei calcoli necessari. Verrà inoltre mostrato sia lo svolgimento manuale, sia la soluzione ottenuta mediante l’utilizzo di apposito software.
Verranno particolarmente incoraggiati l’utilizzo del software statistico open source “R” e del software libero Epi Info.

Modalità verifica apprendimento

L'accertamento del raggiungimento degli obiettivi previsti dal modulo
prevede una prova scritta, consistente principalmente in quesiti a
risposta aperta su argomenti trattati nel corso. In questo modo, verrà
accertata la conoscenza e la comprensione, da parte dello studente, sia
dei principi teorici che delle loro conseguenze in campo medico e
biologico.
La prova scritta prevederà anche la risoluzione di uno o più problemi, per
verificare il raggiungimento dell'obiettivo della capacità di applicare le
conoscenze acquisite ad una situazione simulata di interesse biologico o
medico.
La valutazione collegiale degli elaborati attribuirà lo stesso peso ale
risposte ai quesiti a risposta aperta ed ai problemi proposti.

Altre informazioni

- - -