STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
cod. 15420

Anno accademico 2012/13
1° anno di corso - Primo semestre
Docente
Giuseppe PEDRAZZI
Settore scientifico disciplinare
Statistica per la ricerca sperimentale e tecnologica (SECS-S/02)
Ambito
Scienze interdisciplinari
Tipologia attività formativa
Caratterizzante
16 ore
di attività frontali
2 crediti
sede: -
insegnamento
in - - -

Modulo dell'insegnamento integrato: FISICA, STATISTICA E INFORMATICA

Obiettivi formativi

Introdurre lo studente alla logica del pensiero statistico e alla sua applicazione nella pratica reale

Prerequisiti

- - -

Contenuti dell'insegnamento

Richiami dei principi generali della inferenza statistica. La distribuzione campionaria. Ipotesi e test di ipotesi. Errore di I e II tipo. Potenza di un test e curva operativa. Test parametrici : test t di Student, analisi della varianza. Test non parametrici : test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.
Regressione lineare e correlazione. Regressione multipla, regressione logistica.
Cenni di analisi delle componenti principali, analisi discriminante, cluster analysis.

Utilizzo dei software statistici R e SPSS per l'analisi di dati reali tratti dalla letteratura medica.

Programma esteso

Disegno sperimentale e analisi degli esperimenti.
Power analysis, effect size, sample size calculations.
Calcolo delle probabilità e calcolo combinatorio, distribuzioni di probabilità speciali.
Richiami di statistica univariata e statistica descrittiva elementare.
Richiami sui principi generali dell’inferenza statistica univariata. Concetto di distribuzione campionaria, errore di I e II tipo, potenza di un test, curva operativa.
Test parametrici - test t di Student, ANOVA a 1 e 2 criteri di classificazione, ANOVA per misure ripetute.
Test non parametrici - test di Wilcoxon, test di Mann-Whitney, test di Kruskal-Wallis, test di Friedman, test della mediana, test chi-quadrato, test esatto di Fisher.

Statistica multivariata.
Regressione multipla, regressione logistica, Cenni di analisi delle componenti principali, analisi discriminante, classificazione e cluster analysis.
Utilizzo del software statistico professionale, R e SPSS, per l'analisi di dati reali tratti dalla letteratura medica.

Bibliografia

1) Appunti delle lezioni
2) Sidney Siegel, N. John Castellan Jr. : - Statistica non parametrica - ed. McGraw-Hill
4) Risorse e link da Internet

Metodi didattici

lezioni frontali

Modalità verifica apprendimento

esame scritto

Altre informazioni

- - -

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.medicina@unipr.it
T.+39 0521 033700

Servizio per la qualità della didattica

Manager della didattica:
Dott.ssa Margherita Battioni
T. +39 0521 906887
E. servizio didattica.dimec@unipr.it 
E. del manager margherita.battioni@unipr.it 

Presidente del corso di studio

Prof.ssa Federica Maria Angela Rizzi
E. federicamariaangel.rizzi@unipr.it 

Direttore delle attività didattiche professionalizzanti (DADP)

Dott.ssa  Ampollini Monica   

mampollini@ao.pr.it

Delegate orientamento in ingresso

Prof.ssa  Paola Mozzoni
E. paola.mozzoni@unipr.it

Dott.ssa Monica  Ampollini

mampollini@ao.pr.it

Delegate orientamento in uscita

Prof.ssa Paola Mozzoni
E. paola.mozzoni@unipr.it 

Dott.ssa Monica  Ampollini

mampollini@ao.pr.it

Docenti tutor

Dott.ssa Valentina Cioccoloni
E. vcioccoloni@ao.pr.it

Dott.ssa Patrizia Ricò

E. prico@ao.pr.it

 

 

Delegati Erasmus

Prof. Roberto Sala
E. roberto.sala@unipr

Prof.ssa Thelma De Aguiar Pertinhez

thelmadeaguiarpertinhez@unipr.it

Prof.ssa Ileana Ramazzina

ileana.ramazzina@unipr.it

Referente assicurazione qualità

Prof.  Luciano Simone
E. luciano.simone@unipr.it

Tirocini formativi

Dott.ssa Monica Ampollini

E. monica.ampollini@unipr.it 

Studenti tutor