Learning objectives
The course will be held through lectures to Students either in classroom (“in presenza”) or in synchronous-streaming (“in telepresenza”) on Teams platform. Therefore, the opportunity of Student/Teacher interaction will be preserved both face to face and remotely, by the simultaneous use of the Teams platform. Teaching methods will include movies and 3D simulation which aids the comprension of the molecular interactions and mechanisms; web sources and bibliography references will be suggested.
Lectures will be supported by slide presentations, which will be available to students on Elly platform (https://elly2020.medicina.unipr.it/).
Prerequisites
Basic concepts on cell biology.
Basic concepts of organic chemistry.
Propedeutical Biochemistry.
Course unit content
The course provides basic knowledge on the molecular aspects of the transmission of genetic information. The course initially introduces the basics of the concept of inheritance, and then introduces nucleic acids as molecules able to ensure the transmission of the genetic information through DNA replication, RNA transcription and protein translation. Then will be introduced the concept of DNA damage/mutation and the impact of DNA mutation on human health. Finally the course will provide the basis for the knowledge of the main techniques used for DNA/RNA manipulation, and their application in various fields of research, diagnosis, and treatment of human diseases.
Full programme
From Darwin to Mendel to the discovery of the transforming principle: bases of the transmission of genetic information.
Nucleic acids: composition and structure.
3D structure of DNA, DNA topology: coiling and supercoiling.
Topoisomerases.
Histones, chromatin, chromosomes.
Basics of epigenetic modifications of DNA and histones.
DNA replication: characteristics of DNA polymerases, replication mechanism.
Drugs that interfere with the replication process.
Replication forks, replisome assembly, replication coupling mechanisms.
Origin of replication, mechanism of origins control in eukaryotes.
Termination of replication.
The ends of linear chromosomes: telomerase.
DNA damage and mutations.
Mechanisms of damage repair: direct, indirect, double-strand break repair mechanisms.
RNA transcription in eukaryotes: characteristics of RNA polymerases, formation of the initiation complex, elongation, termination of transcription.
Characteristics of prokaryotic and eukaryotic promoters.
Regulation of gene expression in eukaryotes.
RNA maturation: capping, splicing, tailing, editing.
Notes on RNA interference.
From RNA to proteins: mechanisms and enzymes of messenger RNA translation. The genetic code.
Translation of messenger mRNA: molecules and enzymes involved.
t-RNA, ribosomes, aminoacyl-tRNAsynthetase
Stages of translation: initiation, elongation, termination.
Drugs that interfere with the protein translation process.
Bibliography
JD Watson et al. Molecular Biology of the Gene. Person, 7h revised edition .
Lodish et al. “Molecular Cell Biology” , W.H.Freeman & Co Ltd, 8th Revised edition
Clark et al. “Molecular Biology” Academic Cell Press, 3rd edition
Teaching methods
Lectures will be held on-site in compliance with safety standards, provided that further instructions on the ongoing health emergency are not implemented. Teaching methods will include movies and 3D simulation which aids the understanding of molecular interactions and mechanisms; web sources and bibliography references will be suggested.
Supporting material will be available on the specific, student-reserved platform (Elly)
Assessment methods and criteria
The exam consists in a written test with closed answers, made of 30 multiple choice questions, ten of which concerning Molecular Biology topics. Time allowed for the test is 60 minutes; in the first 20 minutes the students are allowed to quit, returning the test to the commission. Each positive answer contributes with 1 point to the final grade (0-30/30). There is no penalty for incorrect answers. In case of a positive result, you can choose whether to proceed with the recording of the grade or to take an oral exam.
In case of the persistence of the health emergency, the exams will be conducted remotely, by means of a structured written test (by Teams and/or Elly). The test consists of 6 open-ended questions on all the course contents (reference texts + documents uploaded to Elly during the course).
Students with SLD / BSE must first contact Le Eli-che: support for students with disabilities, D.S.A., B.E.S. (https://sea.unipr.it/it/servizi/le-eli-che-supporto-studenti-con-disabilita-dsa-bes).
Other information
- - -
2030 agenda goals for sustainable development
- - -