DIGITAL COMMUNICATIONS
cod. 1005254

Academic year 2014/15
2° year of course - First semester
Professor
Giulio COLAVOLPE
Academic discipline
Telecomunicazioni (ING-INF/03)
Field
Ingegneria delle telecomunicazioni
Type of training activity
Characterising
63 hours
of face-to-face activities
9 credits
hub:
course unit
in - - -

Learning objectives

Knowledge and understanding
The main goal of this course is to provide students with the ability to
understand the foundations of modern digital communication systems and, in particular,
- the digital communication systems in the presence of channels with memory;
- the techniques for complexity reduction;
- the advanced technique for channel coding and decoding;
- the performance analysis techniques for these systems.

Applying knowledge and understanding
The abilities to apply the acquired knowledge and understanding result to be:
- the design and performance analysis of moder digital communication systems;
- the selection and design of proper coding systems for a given communication channel.

Prerequisites

Detection and estimation theory

Course unit content

Transmission systems with memory--General model of modulated signals. Sequence detection. Error probability evaluation for receivers based on sequence detection. Continuous phase modulations. Trellis-coded modulations. Reduced-state sequence detection. Linear and decision-feedback equalization.

Advanced topics--Sequence detection in the presence of unknown parameters. Per-survivor processing. Turbo codes and iterative decoding. Factor graphs and the sum-product algorithm. Low-density parity-check codes. Bit-interleaved coded modulation. Space-time codes.

Full programme

Transmission systems with memory
- General model of modulated signals (4 hours).
- Sequence detection (8 hours).
- Error probability evaluation for receivers based on sequence detection (4 hours).
- Continuous phase modulations (2 hours).
- Trellis-coded modulations (2 hours).
- Reduced-state sequence detection (2 hours).
- Linear and decision-feedback equalization (4 hours).

Advanced topics
- Sequence detection in the presence of unknown parameters. (8 hours).
- Per-survivor processing (2 hours).
- Turbo codes and iterative decoding (4 hours).
- Factor graphs and the sum-product algorithm (8 hours).
- Low-density parity-check codes (2 hours).
- Bit-interleaved coded modulation (4 hours).
- Space-time codes (8 hours).

Bibliography

G. Colavolpe, R. Raheli, Lezioni di Trasmissione numerica, Monte Università Parma editore, 2004.
S. Benedetto, E. Biglieri, Principles of digital communications, with wireless applications, Kluwer, 1999.
J. G. Proakis, Digital communications, McGraw-Hill, 4th ed., 2001.
G. Vitetta, D. P. Taylor, G. Colavolpe, F. Pancaldi, and P. A. Martin, Wireless Communications: Algorithmic Techniques, John Wiley & Sons. August 2013. ISBN: 0-470-51239-3.
G. Ferrari, G. Colavolpe, and R. Raheli, Detection Algorithms for Wireless Communications, John Wiley & Sons. August 2004. ISBN: 0-470-85828-1.

Teaching methods

Lectures and exercises (approximately with a ratio 80%-20%). For the latter, the teacher will solve on the blackboard the exercises assigned to the students one week in advance. In such a way, the students can try to solve them at home and will take advantage much more of the interaction with the lecturer, and can explain their work

Assessment methods and criteria

Written and oral exams. It is required to pass the written exam to be admitted to the oral exam. The final mark will be the arithmetic mean of both marks. The written exam is about the design and analysis of a digital communication system, the oral exam on the theoretical aspects. Intermediate written exams will be considerated upon students' request.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.ingarc@unipr.it

Quality assurance office

Education manager:
Elena Roncai
T. +39 0521 903663
Office E. dia.didattica@unipr.it
Manager E. elena.roncai@unipr.it

President of the degree course

Paolo Serena
E. paolo.serena@unipr.it

Faculty advisor

Alberto Bononi
E. alberto.bononi@unipr.it

Career guidance delegate

Guido Matrella
E. guido.matrella@unipr.it

Tutor professor

Alberto Bononi
E. alberto.bononi@unipr.it
Giulio Colavolpe
E. giulio.colavolpe@unipr.it
Riccardo Raheli
E. riccardo.raheli@unipr.it

Erasmus delegates

Walter Belardi
E. walter.belardi@unipr.it

Quality assurance manager

Paolo Serena
E. paolo.serena@unipr.it

Internships

not defined

Tutor students

not defined