Learning objectives
Knowledge and understanding
The main goal of this course is to provide students with the ability to
understand the foundations of modern digital communication systems and, in particular,
- the digital communication systems in the presence of channels with memory;
- the techniques for complexity reduction;
- the advanced technique for channel coding and decoding;
- the performance analysis techniques for these systems.
Applying knowledge and understanding
The abilities to apply the acquired knowledge and understanding result to be:
- the design and performance analysis of moder digital communication systems;
- the selection and design of proper coding systems for a given communication channel.
Prerequisites
Detection and estimation theory
Course unit content
Transmission systems with memory--General model of modulated signals. Sequence detection. Error probability evaluation for receivers based on sequence detection. Continuous phase modulations. Trellis-coded modulations. Reduced-state sequence detection. Linear and decision-feedback equalization.
Advanced topics--Sequence detection in the presence of unknown parameters. Per-survivor processing. Turbo codes and iterative decoding. Factor graphs and the sum-product algorithm. Low-density parity-check codes. Bit-interleaved coded modulation. Space-time codes.
Full programme
Transmission systems with memory
- General model of modulated signals (4 hours).
- Sequence detection (8 hours).
- Error probability evaluation for receivers based on sequence detection (4 hours).
- Continuous phase modulations (2 hours).
- Trellis-coded modulations (2 hours).
- Reduced-state sequence detection (2 hours).
- Linear and decision-feedback equalization (4 hours).
Advanced topics
- Sequence detection in the presence of unknown parameters. (8 hours).
- Per-survivor processing (2 hours).
- Turbo codes and iterative decoding (4 hours).
- Factor graphs and the sum-product algorithm (8 hours).
- Low-density parity-check codes (2 hours).
- Bit-interleaved coded modulation (4 hours).
- Space-time codes (8 hours).
Bibliography
G. Colavolpe, R. Raheli, Lezioni di Trasmissione numerica, Monte Università Parma editore, 2004.
S. Benedetto, E. Biglieri, Principles of digital communications, with wireless applications, Kluwer, 1999.
J. G. Proakis, Digital communications, McGraw-Hill, 4th ed., 2001.
G. Vitetta, D. P. Taylor, G. Colavolpe, F. Pancaldi, and P. A. Martin, Wireless Communications: Algorithmic Techniques, John Wiley & Sons. August 2013. ISBN: 0-470-51239-3.
G. Ferrari, G. Colavolpe, and R. Raheli, Detection Algorithms for Wireless Communications, John Wiley & Sons. August 2004. ISBN: 0-470-85828-1.
Teaching methods
Lectures and exercises (approximately with a ratio 80%-20%). For the latter, the teacher will solve on the blackboard the exercises assigned to the students one week in advance. In such a way, the students can try to solve them at home and will take advantage much more of the interaction with the lecturer, and can explain their work
Assessment methods and criteria
Written and oral exams. It is required to pass the written exam to be admitted to the oral exam. The final mark will be the arithmetic mean of both marks. The written exam is about the design and analysis of a digital communication system, the oral exam on the theoretical aspects. Intermediate written exams will be considerated upon students' request.
Other information
- - -
2030 agenda goals for sustainable development
- - -