CALCULUS 1 (UNIT 2)
cod. 1004541

Academic year 2013/14
1° year of course - Second semester
Professor
Marino BELLONI
Academic discipline
Analisi matematica (MAT/05)
Field
Formazione matematica di base
Type of training activity
Basic
48 hours
of face-to-face activities
6 credits
hub: PARMA
course unit
in - - -

Integrated course unit module: CALCULUS 1

Learning objectives

Knowledge and understanding:
At the end of this course the student should know the essential definitions
and results in analysis in one variable, and he should be able to grasp how
these enter in the solution of problems.

Applying knowledge and understanding:
The student should be able to apply the forementioned notionsto solve medium
level problems, and to understand how they will be used in a more applied
context.

Making judgements:
The student should be able to evaluate coherence and correctness of the
results obtained by him or presented him.

Communication skills:
The student should be able to communicate in a clear and precise way, also
in a context broader than mere calculus.

Prerequisites

No

Course unit content

Real analysis, functions of one variable, sequences, series

Full programme

Integrals
Partitions of an interval; Riemann sums; Riemann integral; integrability of monotonic functions and of continuous functions;
integral mean; fundamental theorem of integral calculus; primitives; integration by parts; integration by substitution; integration of rational functions.
Improper integrals; convergence of the integral, absolute convergence,comparison tests. Integral test for positive valued series.

Asymptotic expansions
Landau symbols; Taylor's theorem; explicit formula of the remainder; Mac Laurin expansion of elementary functions; Taylor's series

Complements
Bolzano-Weirstrass theorem, compactness in the real line; Cauchy sequences; upper and lower limits;
uniform continuity.

Complex numbers.
Definitions, operations, complex plain, polar form, root extraction.

Differential equations
Nomenclature: order, linear and nonlinear; first examples; solutions of linear first order equations; solution of separable differential equations; constant coefficients linear differential equations.

Bibliography

E. Acerbi, G. Buttazzo: Primo corso di Analisi Matematica, Ed. Pitagora, 1997.

E. Acerbi, G. Buttazzo: Analisi matematica ABC, Ed. Pitagora, 2000.

M. Bramanti, C.D. Pagani, S. Salsa: Analisi Matematica 1, Ed. Zanichelli, 2008.

M. Giaquinta, L. Modica, Analisi Matematica 1, vol. 1 & 2, Ed. Pitagora, 1998.

E. Giusti, Analisi matematica vol.1, Ed. Boringhieri, 2002

Teaching methods

classroom lectures and classroom exercises

Assessment methods and criteria

The examination is both written and oral.
In the written part, the student will show his basis knowledge and his ability in solving some particular paroblem. In the oral part, the student will show his knowledge of the foundamental theorems of Mathematical Analisys 1. The oral exposition must be done using a proper mathematical formalism.

Other information

- - -

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.scienze@unipr.it
T. +39 0521 905116

Quality assurance office

Education manager
dott.ssa Giulia Bonamartini

T. +39 0521 906968
E. servizio smfi.didattica@unipr.it
E. del manager giulia.bonamartini@unipr.it

President of the degree course

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Faculty advisor

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Career guidance delegate

Prof. Francesco Morandin
E. francesco.morandin@unipr.it

Tutor Professors

Prof. Emilio Acerbi
E. emilio.acerbi@unipr.it

Prof. Marino Belloni
E. marino.belloni@unipr.it

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Prof.ssa Chiara Guardasoni
E. chiara.guardasoni@unipr.it

Prof. Luca Lorenzi
E. luca.lorenzi@unipr.it

Prof. Costantino Medori
E. costantino.medori@unipr.it

Prof. Adriano Tomassini
E. adriano.tomassini@unipr.it

Erasmus delegates

Prof.ssa Fiorenza Morini
E. fiorenza.morini@unipr.it

Quality assurance manager

Prof.ssa Maria Groppi
E. maria.groppi@unipr.it

Tutor students

Dott. Matteo Mezzadri
E. matteo.mezzadri@studenti.unipr.it