NETWORK PERFORMANCE
cod. 1005251

Anno accademico 2020/21
1° anno di corso - Secondo semestre
Docente
Gianluigi FERRARI
Settore scientifico disciplinare
Telecomunicazioni (ING-INF/03)
Ambito
Ingegneria delle telecomunicazioni
Tipologia attività formativa
Caratterizzante
48 ore
di attività frontali
6 crediti
sede: PARMA
insegnamento
in INGLESE

Obiettivi formativi

Gli obiettivi del corso, in termini di conoscenza e comprensione, sono i seguenti:
- fornire allo studente la padronanza di tecniche matematiche per l'analisi di prestazione di reti di telecomunicazioni;
- fornire allo studente la capacità di astrarre scenari applicativi reali di reti di telecomunicazioni.

Le capacità di applicare le conoscenze e comprensione elencate sopra risultano
essere in particolare:
- analizzare e descrivere una rete di telecomunicazione;
- valutare le prestazioni di reti di telecomunicazione.


Il corso ha come obiettivo anche quello di migliorare l'autonomia di
giudizio e le capacità comunicative attraverso la redazione di una breve relazione su un articolo di letteratura recente.

Prerequisiti

Contenuti dell'insegnamento

Legge di Little. Processi di Poisson. Proprietà PASTA. Processi di rinnovo. LA CODA
M/G/1. Analisi di prestazione delle LAN (Controllore ideale. TDMA/FDMA. Aloha. Slotted Aloha). Analisi di
prestazione delle reti geografiche. Catene di Markov tempo discrete (DTMC). La coda Geo/Geo/1. La coda
Legge di Little. Processi di Poisson. Proprietà PASTA. Processi di rinnovo. LA CODA M/G/1. Analisi di prestazione delle LAN (Controllore ideale. TDMA/FDMA. Aloha. Slotted Aloha). Analisi di prestazione delle reti geografiche. Catene di Markov tempo discrete (DTMC). La coda Geo/Geo/1. La coda Geo/Geo/1/B. La rete Aloha slottata. La coda M/G/1. La coda M/G/1/B. La rete Ethernet (mini)slottata. Catene di Markov assorbenti (AMC). Catene di Markov tempo continue (CTMC). Cenni ai processi semi-Markov. La coda M/M/1. Catene di Markov assorbenti (AMC). Catene di Markov tempo continue (CTMC). Cenni ai processi semi-Markov. La coda M/M/1.

Programma esteso

ANALISI ELEMENTARE DELLE PRESTAZIONI

LEZIONE 1: Introduzione. Legge di Little. Esempi. Intensità di traffico. Probabilità di perdita, throughput.
Processi di Poisson e proprietà.

LEZIONE 2: Proprietà PASTA. Processi di rinnovo. Proprietà. Esempi.

LEZIONE 3: LA CODA M/G/1: Analisi valori medi. La formula Pollaczek-Khinchin. Estensioni: (1) server con vacanze; (2) server con set-up time e metodo grafico per il calcolo del tempo residuo.

LEZIONE 4: LA CODA M/G/1: Server con set-up time: calcolo del tempo residuo con metodo grafico.
PRESTAZIONI DELLE LAN: Controllore ideale. TDMA/FDMA. Aloha. Slotted Aloha. Confronto con TDMA.

LEZIONE 5: PRESTAZIONI DELLE LAN: Throughput massimo di Ethernet e Token ring. Throughput e delay dei sistemi a polling - limited service. Confronto Token-ring con TDMA controllore ideale. Esercizi sul sistema a polling: cicli e rinnovi.

LEZIONE 6: Esercizi su M/G/1 ed esercizio su incrocio con semafori.

LEZIONE 7: PRESTAZIONI DELLE RETI GEOGRAFICHE. Formula di Kleinrock. Esempi di instradamento ottimo. Throughput e ritardo in reti regolari e traffico uniforme. Topologie.

LEZIONE 8: Esercizio su reti multi-hop: rotonde confrontate con semafori.

ANALISI AVANZATA DELLE PRESTAZIONE

LEZIONE 8 (cnt.): Catene di Markov tempo discrete (DTMC) Matrice di transizione. Legge di aggiornamento.

LEZIONE 9: Esempio: sorgente slottata. Distribuzioni stazionarie. Distribuzione limite. Classificazione degli stati. Ricorrenza. Occupazione degli stati a lungo termine. Ergodicità.

LEZIONE 10: Esercizi su: sistemi a polling, formula PK, code M/G/1.

LEZIONE 11: Distribuzione limite in catene ergodiche. Forma canonica della matrice di transizione.

LEZIONE 12: Esercitazioni con Matlab su code M/G/1.

LEZIONE 13: Applicazioni: la coda Geo/Geo/1 ED/LA: Distribuzione a regime, throughput, ritardo.

LEZIONE 14: La coda Geo/Geo/1 ED/LA: Bilancio di flusso. La coda Geo/Geo/1/B: Distribuzione a regime, throughput, loss, ritardo.

LEZIONE 15: La rete Aloha slottata: Distribuzione a regime.
La rete Aloha slottata: throughput, ritardo, dinamica interna.

LEZIONE 16: La coda M/G/1: studio della catena embedded. Richiami su moment generating function (MGF) e probability generating function (PGF). Formula PK-transform.

LEZIONE 17: La coda M/G/1/B, fino a derivazione della distribuzione vista da arrivi. La coda M/M/1/B.

LEZIONE 18: La rete Ethernet (CSMA-CD) (mini)slottata: Distribuzione a regime.

LEZIONE 19: La rete Ethernet (mini)slottata: throughput, ritardo, dinamica interna (accennata).
Catene di Markov assorbenti (AMC): analisi in regime transitorio.

LEZIONE 20: Catene di Markov assorbenti (AMC): analisi in regime transitorio (cnt.).

LEZIONE 21: Catene di Markov tempo continue (CTMC): teorema del tempo di soggiorno negli stati; legge di aggiornamento dello stato. Matrice dei generatori infinitesimali. Probabilità stazionarie. Bilancio di flusso.

LEZIONE 22: Seminar.

LEZIONE 23: Cenni ai processi semi-Markov. Esempi: la coda M/M/1. Distribuzione a regime. Numero medio in coda e tempo medio d'attesa. Distribuzione del tempo di attesa con disciplina FIFO. Il processo delle partenze.

Bibliografia

Dispense di "Reti di Telecomunicazioni B" del Prof. Bononi (disponibili al centro documentazione e/o forniti dal docente).
Altri riferimenti:
[1] D. P. Bertsekas, R. Gallager, Data networks, 2nd Ed. Prentice Hall, 1992.
[2] J. L. Hammond, P. J.P. O'Reilly, Performance analysis of Local Computer Networks. Addison Wesley, 1986.
[3] A. Leon-Garcia, Probability and random processes for electrical engineering, 2nd Ed. Addison Wesley, 1994.
[4] S. Ross, Stochastic Processes. Wiley, 1983.
[5] A. S. Tanenbaum, Computer Networks, 2nd Ed. Prentice-Hall, 1989.
[6] M. Schwartz, Telecommunication Networks. Addison-Wesley, 1987.
[7] J. G. Kemeny, H. Mirkil, J. L. Snell, G. L. Thompson, Finite mathematical structures. Prentice Hall, 1959.
[8] D. Gross, C. M. Harris, Fundamentals of Queuing Theory. Wiley, 1985.
[9] H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation. Volume III: Discrete-time Systems. North-Holland, Amsterdam, Holland, 1991.

Metodi didattici

Nel corso delle lezioni verranno esaminati i temi connessi alle prestazioni di reti di telecomunicazione come indicato nel programma. Durante il corso si prevederanno anche esercitazioni su applicazioni legate agli argomenti del corso.

Modalità verifica apprendimento

Esame scritto con risposte aperte. Si prevede anche la possibilità di fare delle prove in itinere, con voto finale corrispondente alla media aritmetica dei voti delle prove intermedie. Durante ogni prova scritta (completa o in itinere) tutte le domande hanno lo stesso peso. Non è consentito portare alcun materiale di supporto durante le prove.

Altre informazioni

Il materiale didattico e di supporto alle lezioni verrà fornito dal docente.

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.ingarc@unipr.it

Servizio per la qualità della didattica

Manager della didattica: 
Elena Roncai
T.+39 0521 903663
E. servizio dia.didattica@unipr.it
E. del manager elena.roncai@unipr.it

 

Presidente del corso di studio

Paolo Serena
E. paolo.serena@unipr.it

Delegato orientamento in ingresso

Alberto Bononi
E. alberto.bononi@unipr.it

Delegato orientamento in uscita

Guido Matrella
E. guido.matrella@unipr.it

Docenti tutor

Alberto Bononi
E. alberto.bononi@unipr.it
Giulio Colavolpe
E. giulio.colavolpe@unipr.it
Riccardo Raheli
E. riccardo.raheli@unipr.it

Delegati Erasmus

Walter Belardi
E. walter.belardi@unipr.it
 

Responsabile assicurazione qualità

Paolo Serena
E. paolo.serena@unipr.it

Tirocini formativi

E. (non definito)

Studenti tutor

E. (non definito)