DETECTION AND ESTIMATION
cod. 1005248

Anno accademico 2014/15
1° anno di corso - Primo semestre
Docente
Alberto BONONI
Settore scientifico disciplinare
Telecomunicazioni (ING-INF/03)
Ambito
Ingegneria delle telecomunicazioni
Tipologia attività formativa
Caratterizzante
63 ore
di attività frontali
9 crediti
sede: PARMA
insegnamento
in - - -

Obiettivi formativi

L’obiettivo del corso è fornire allo studente la capacità di comprendere
ed applicare le regole di base della teoria della decisione e della stima, e in particolare:
- i test statistici nel decidere tra diverse ipotesi
- la struttura del decisore ottimo nel contesto delle trasmissioni numeriche.
- i principali stimatori di uso comune
- la struttura dei filtri ottimi nel contesto delle trasmissioni numeriche.

Le capacità di applicare le conoscenze sopra elencate risultano
essere in particolare:
- progettare ed analizzare le prestazioni del blocco di decisione nei ricevitori per trasmissioni numeriche
- progettare ed analizzare le prestazioni dei blocchi di stima dei parametri di segnale nei ricevitori per trasmissioni numeriche.

Prerequisiti

Vedi testo inglese.

Contenuti dell'insegnamento

1. Detection Theory
1.1 Bayes, MiniMax, Neyman Pearson Tests
1.2 Multiple hypothesis testing MAP and ML tests
1.3 Sufficient statistics
Factorization, Irrelevance, Reversibility theorems
1.4 MAP Test with Gaussian signals. Additive Gaussian noise channel
1.5 Optimal detection of continuous-time signals: discrete representation.
Orthonormal bases and signal coordinates. Gram-Schmidt procedure.
Projection Theorem. Complete bases
1.6 Discrete representation of a stochastic process. Karhunen Leove (KL) basis
1.7 Optimal MAP receiver in AWGN
1.8 Techniques to evaluate error probability
1.9 Composite hypothesis testing: partially known signals in AWGN.
Optimal incoherent MAP receiver structure
1.10 Detection in additive colored Gaussian noise: whitening, Cholesky decomposition
1.11 Detection with stochastic Gaussian signals: Radiometer

2. Estimation theory
2.1 Fisherian estimation
2.1.1 Minimum Variance Unbiased Estimation
2.1.2 Cramer Rao Lower Bound
2.1.3 Maximum Likelihood estimation
2.2 Bayesian estimation
2.2.1 Minimum Mean Square Error estimation
2.2.2 MAP estimation
2.2.3 Linear MMSE estimation
2.2.4 Spectral Factorization and Wiener Filtering

Programma esteso

Vedi Testo Inglese

Bibliografia

Part I: Detection
[1] J. Cioffi, "Signal Processing and Detection", Ch. 1, http://www.stanford.edu/~cioffi
[2] B. Rimoldi, "Principles of digital Communications", EPFL, Lausanne. Ch 1-4.
[3] A. Lapidoth, "A Foundation in Digital Communication" ETH, Zurich.
[4] R. Raheli, G. Colavolpe, "Trasmissione numerica", Monte Universita' Parma Ed., Ch. 1-5. In Italian.

Part II: Estimation
[5] S. M. Kay, "Fundamentals of statistical signal processing", Vol.I (estimation), Prentice-Hall, 1998.

Metodi didattici

Lezioni teoriche per un totale di 63 ore ed esercitazioni per un totale di 9 ore.
Esercizi assegnati per casa.

Modalità verifica apprendimento

Esami solo orali.
Vedi dettagli nel testo inglese

Altre informazioni

Vedi testo inglese

Obiettivi agenda 2030 per lo sviluppo sostenibile

- - -

Referenti e contatti

Numero verde

800 904 084

Segreteria studenti

E. segreteria.ingarc@unipr.it

Servizio per la qualità della didattica

Manager della didattica: 
Elena Roncai
T.+39 0521 903663
E. servizio dia.didattica@unipr.it
E. del manager elena.roncai@unipr.it

 

Presidente del corso di studio

Paolo Serena
E. paolo.serena@unipr.it

Delegato orientamento in ingresso

Alberto Bononi
E. alberto.bononi@unipr.it

Delegato orientamento in uscita

Guido Matrella
E. guido.matrella@unipr.it

Docenti tutor

Alberto Bononi
E. alberto.bononi@unipr.it
Giulio Colavolpe
E. giulio.colavolpe@unipr.it
Riccardo Raheli
E. riccardo.raheli@unipr.it

Delegati Erasmus

Walter Belardi
E. walter.belardi@unipr.it
 

Responsabile assicurazione qualità

Paolo Serena
E. paolo.serena@unipr.it

Tirocini formativi

E. (non definito)

Studenti tutor

E. (non definito)