Learning objectives
Emphasize the relationship between science and practical applications and industrial chemistry. Increasing the students' awareness of the importance of chemistry and science in contemporary life and industrial activity.
Prerequisites
A solid background in chemistry is recommended.
Course unit content
We recall some basic concepts of general chemistry such as the connection between the structure of matter and the chemical and physical properties.
Basic concepts of chemical bonding and intermolecular forces. Study of the solid state. The unit cell. Interaction between X rays and the crystal lattices. The X ray diffraction methodology as a technique for the investigation of materials. UV-visible spectroscopy, IR spectroscopy and mass spectroscopy. Fluorescence and phosphorescence.
Basic concepts of electrochemistry. Galvanic and electrolytic cells. Commercial cells. Accumulators. Lead accumulators. Lithium ions generators.
Synthesis, characterization and properties of polymeric materials. Polyaddition and polycondesation reactions.
Sol gel methodology in the synthesis of colloidal materials. Gel, xerogel and aerogel. Ceramics materials.
Nanomaterials and nanotechnologies. SEM, AFM and STM techniques.
Full programme
- - -
Bibliography
W. F. Smith, J. Hashemi; Scienza e tecnologia dei materiali. Mc Graw-Hill
W. D. Callister, D. G. Rethwisch, Scienza e Ingegneria dei materiali. EdiSES
Slides provided by the professor.
Teaching methods
Oral lesson
Assessment methods and criteria
Written questions.
Other information
Attendance is recommended
2030 agenda goals for sustainable development
- - -