Learning objectives
Main objectives are learning and understanding the basic principles of chemistry, the properties of the main chemical molecules of biological interest, the functional aspects and inter-relationships of biomolecules and, finally, the etiologic agents present in the environment that are responsible for disease manifestations and onset of tumors. These skills, combined with the acquisition of knowledge of medical terminology, will be functional to understand the topics of more specialized courses and useful for the future employment.
Prerequisites
- - -
Course unit content
FUNDAMENTALS of CHEMISTRY
This module can be divided into three parts. The first part covers topics of General Chemistry on elementary substances and chemical compounds, periodic table, chemical symbols of the elements, the definition and application of oxidation number, nomenclature of inorganic compounds and rules for balancing reactions and redox reactions. The second part concerns the structure of the atom, chemical bonding, and physical states of matter. The third and last part relates to solutions, chemical equilibrium, pH and buffers.
BIOCHEMISTRY
After a brief introduction to the basic principles of Organic Chemistry, the main molecules of biological systems will be presented: carbohydrates, lipids, proteins and nucleic acids, and ATP as energy transporter (Structural Biochemistry). In the second section, the main subject will be Metabolic Biochemistry with particular emphasis on bioenergetics, red-ox biological reactions, and cell metabolism.
ENVIRONMENTAL PATHOLOGY
Physical, chemical and biological causes of diseases. Environmental and nutritional pathology. Molecular and cellular oncology and cancer etiology.
Full programme
FUNDAMENTALS OF CHEMISTRY
Elementary substances and chemical compounds. Periodic Table. Chemical symbols of the elements. Chemical phenomena and physical phenomena. Chemically homogeneous and heterogeneous systems. The mixtures. Dalton's atomic theory. The atom as the fundamental unit of matter, through which chemical transformations occur. Lavoisier's law. The definition of mass and weight. The principle of Avogadro. Mass and atomic weight. The scale of atomic weights. Molecular Weight. Chemical formulas: quality and quantity information. Atomic mass units. Chemical symbols and formulas. Fundamental subatomic particles: proton, neutron and electron. Atomic number (Z) and mass number.
Definition and application of oxidation number. The oxidation numbers of the elements. Nomenclature of inorganic compounds: oxides and hydroxides. Preparation of hydroxides. The peroxides, basic oxides and anhydrides. IUPAC nomenclature, Stock and traditional for oxides, hydroxides and anhydrides. Acids and hydracids (IUPAC and traditional nomenclature) and oxoacids (traditional nomenclature). The salts and the reactions of salification: reactions of simple exchange and double exchange.
Rules for balancing redox and not redox reactions. Acidic and Basic substances. Equations: molecular and ionic equations.
Structure: electrical nature of matter, particle nature of electricity. Atomic model of Thomson and Rutherford. Isotopes and isobars. Elettromegnetica radiation. Planck Theory. Bohr atom. Dualism of wave - particle (De Broglie). Uncertainty principle of Heisenberg. Atomic orbitals and quantum numbers. Polyelectronic atoms. Aufbau: Hund's Rule and the Pauli exclusion principle. Periodic Table. Periodic properties: first ionization energy and electron affinity. Electronegativity. Metals and non-metals.
The chemical bond. Ionic and covalent bonding. Lewis theory. Octet rule. Expansion of the sphere of valence. Polar and non-polar covalent bond. Dative covalent bond. Calculation of the percentage of ionic character of a bond. Molecular geometry. VB theory or valence bond. Hybridization (e.g. carbon: sp3, sp2, sp). Weak bonds. Van der Waals forces: dipole-dipole forces, dipole forces - induced dipole, dipole forces instant - instant dipole. Hydrogen bond. Paramagnetic and diamagnetic molecules.
States of matter. Gaseous state. Equation of state of an ideal gas. Ideal gas laws: Boyle's law, Gay-Lussac I °, II ° Gay-Lussac, the Law of Dalton on gas mixtures. Real gases. Liquid state: Properties. Surface tension, evaporation, vapor pressure, boiling point. Changes of state. The solutions: dilute and concentrated. Ways to express the composition of a solution (% weight / weight; % weight / volume; % volume / volume; molarity, molality, ppm; ppb; molar fraction). Density of a solution. Dissolution of a solid ion in water. Solubility. Factors affecting solubility.
Ideal solutions. Raoult's law. Colligative properties of solutions. Strong electrolytes and weak electrolytes. Osmotic pressure. Colligative properties of electrolyte solutions. Solid state: crystalline solids and amorphous solids. Polymorphism and isomorphism. Comparison between diamond and graphite. Types of chemical transformations. Chemical equilibrium: the equilibrium constant. Mobile principle of balance.
Effect of change of temperature on the equilibrium constant. Factors affecting the position of equilibrium. Heterogeneous equilibria and solubility equilibria (solubility product constant). Acids and bases: Arrhenius theory, theory of Bronsred-Lowry, Lewis theory. The strength of acids and bases. Leveling effect of the water. Henderson-Hasselbach equation. The ionic product of water. The pH of a solution. Indicators. The pH measurement. pH values for some solutions. Buffer solutions. Hydrolysis. Conjugate acid-base pair. Relationship between Ka, Kb, Kw a pair acid conjugate base. Electrochemistry: electrolytic and galvanic cells. Total electromotive force: the electrode potential. Electrochemical series of the elements. Kinetics. Reaction rate. Factors affecting the rate of a reaction. Collision theory. Activation energy. Effect of temperature on the rate of a reaction. Catalysts, enzyme catalysis.
CHEMISTRY EXERCISES
Nomenclature of inorganic compounds.
Reactions for the preparation of Salts, Acids and Hydroxides.
Stoichiometry and limiting reagent.
Ground state electronic configurations of the atoms of the elements.
Balancing redox reactions in molecular and ionic form.
Concentrations of the solutions; density of the solutions; dilutions of the solutions. Relations between solubility Salts and Kps.
pH and pOH of strong and weak acids.
BIOCHEMISTRY
A) Organic chemistry foundations.
B) STRUCTURAL BIOCHEMISTRY
Nucleotides and nucleic acids. Nucleotides chemistry and nucleic acids structures. Biological role of DNA, tRNAs, mRNA, and ribosomal RNA.
Aminoacids, peptides and proteins. Amino Acids classification; the peptide bond. The covalent structure of proteins: overview of protein structure. Protein folding and protein functions.
Hemoglobin: structure and function. Oxygen binding and transport at the molecular level. Factors affecting oxygen affinity.
How Enzymes Work. Classification of enzymes.
Lipids. Classification, structure and functions of fatty acids, triglycerides and cholesterol. Structural lipids in membranes.
Carbohydrates. Structure and classification of monosaccharides and disaccharides and polysaccharides.
C) METABOLIC BIOCHEMISTRY
Free Energy and spontaneous reactions. Thermodynamics of biological reactions, ATP as energy carrier.
Cellular metabolism. Oxidation and degradation reactions, biosynthetic reactions.
Mitochondrial reactions. Coenzymes and biological redox reactions. Electron-transfer reactions in mitochondria: components and functions. ATP synthesis. Regulation of Oxidative Phosphorylation.
Glycolysis, Gluconeogenesis, Glycogen metabolism, The Citric Acid Cycle.
Fatty acids and aminoacidic metabolism.
Hormonal regulation and integration of metabolism. Insulin and glucagon. Liver, muscle and brain metabolism.
ENVIRONMENTAL PATHOLOGY
The biological homeostasis. Health and disease. The pathogenic factors. Biological bases in preparation for the course.
The biological basis of cancer. Terminology. Benign and malignant tumors.
Chemical, physical and biological causes of tumors. Chemical Carcinogenesis. Initiation and promotion.
The extrinsic pathogenic factors. Causes of disease of physical nature: transfer of mechanical, thermal, electrical and electromagnetic energy.
Radiation. Radioactivity: accidental and caused emissions. Biological damage from ionizing and exciting radiations.
Causes of chemical nature. Pollution of the natural environment: air, water, soil. Industrial pollution and occupational hazards. Inorganic and organic substances.
Food Pollution. Toxic foods. Accidental and intentional contamination.
Contamination from individual peculiar habits. Smoking, alcohol, drug addictions. Causes of biological nature. Nutritional Pathology. Basic immunology.
Bibliography
Franco Ugozzoli, LEZIONI DI CHIMICA, Edizioni Santa Croce.
Biochimica Essenziale
Gabriele D'Andrea
Editore: EdiSES
Pathology:
- Parola M. “Patologia Generale ed elementi di fisiopatologia” EDISES
- Pontieri G.M. “Patologia generale e fisiopatologia generale” III edizione PICCIN
- Lakhani S. “Le basi della patologia generale” CEA editrice
Teaching methods
The topics will be covered in lectures using slide presentations and overhead transparencies with figures, data, and comments to facilitate memorization and understanding and to engage the students. The Chemistry module will be accompanied by exercises on chemical stoichiometry and concentrations.
Lectures will be held on-site. Supporting material will be available on the specific, student-reserved platform (Elly) and will include slide presentations and audio-video aids.
Assessment methods and criteria
The evaluation is through an oral exam with written chemistry exercises. The student, at the end of the course, will demonstrate knowledge and understanding of the topics of all the three modules.
Other information
- - -
2030 agenda goals for sustainable development
- - -