FOTOGRAMMETRY AND REMOTE SENSING
cod. 1006923

Academic year 2024/25
2° year of course - First semester
Professor
Riccardo RONCELLA
Academic discipline
Topografia e cartografia (ICAR/06)
Field
"ingegneria per l'ambiente e territorio"
Type of training activity
Characterising
72 hours
of face-to-face activities
9 credits
hub: PARMA
course unit
in ITALIAN

Learning objectives

Knowledge and understanding:
The student, at the end of the course, should have a deeper knowledge of surveying discipline, of topography and cartography; should have developed a wide vision of photogrammetry and digital imaging from a theoretical point of view; should have developed a basic understanding of laser scanning applications; should have developed a wide vision of remote sensing applications.

Applying knowledge and understanding:
At the end of the course the student should be capable of performing a topographical and photogrammetrical survey design in every step: calibration, ground point surveying, image acquisition, orientation and restitution and final accuracy evaluation; the student should also be capable of manage and classifying remotely sensed data; practical activities will allow the student to develop basic 3D modelling skills.

Making judgements:
At the end of the course the student should have developed basic judgment skills to evaluate the best surveying techniques (in case integrated) to be applied to a generic engineering problem (territorial or architectural survey, reverse engineering application, monitoring activities, etc.) as well as the ability to assess the correctness and quality of a photogrammetric survey.

Comunication skills:
At the end of the course the student should have developed a good (surveying) terminology and should be able to correctly express concepts and ideas.

Learning skills:
The final seminar activities should bring the student to develop a good understanding of the more recent features and issues of geomatics, both in terms of photogrammetric and image processing and of applications of geomatics to engineering: in fact the student should be capable of autonomously investigate such fields.

Prerequisites

Students are expected to have a good understanding of topography and cartography;
A good understanding of error theory and statistics is also advisable.

Course unit content

The course aims at integrating basic topographic and cartographic knowledge and skills developed in previous courses and introducing the students to more advanced geomatic techniques such as photogrammetry, laser scanning and image analysis, especially considering remote sensed data. The following topics will be considered: brief review of topography and error theory, analytical photogrammetry, digital photogrammetry, main geomatic/photogrammetric products, laser scanning, remote sensing.

Full programme

Lecture Module 0: Introduction
Theoretical concepts:
Brief review of topography and error theory
Practical activities:
Variance propagation applied to simple engineering problems
Topographical network surveying example

Lecture Module 1: Analytical Photogrammetry
Theoretical concepts:
Collinearity Equations
Projection of a plane - Homography
Stereo restitution in the normal case
A brief review of optics, lenses and image formation
Geometric distortion
Lab and analytical calibration
Exterior orientation (one image): resection and DLT
Exterior orientation (two images): one step and two step orientation
Bundle block adjustment
Independent models adjustment
Direct georeferencing
Practical activities:
Image block design
Analytical calibration of an off-the-shelf camera
Image block orientation

Lecture module 2: Digital photogrammetry
Theoretical concepts:
Digital image features
Filtering and manipulating a digital image
Area Based matching
Feature Based matching
Practical activities:
Use of a digital photogrammetry software

Lecture module 3: Products
Theoretical concepts:
Instruments
Stereoscopic vision
Analogical, analytical and digital comparators
Geometric and thematic restitution
Digital terrain model production
Image rectification
Orthophoto production
3D modelling
Practical activities:
3D modelling of a building
Sketchup

Lecture module 4: Laser scanner
Theoretical concepts:
Functioning principles (Time of flight, phase difference, triangulation)
Functioning features
Point cloud alignment
Terrestrial Laser Scanner
Airborne Laser Scanner
First/Last Pulse, Lidar Full Waveform
Practical activities:
Laser scanning surveying of a building
Lecture module 5: Remote sensing
Spectrum and electromagnetic radiation
Geometric and orbital features of a remote sensing satellite
Supervised e unsupervised image classification
Esercitazione:
Remote sensing satellite data injection
Supervised classification of a small area.

Bibliography

Suggested textbooks:
K. Kraus, Fotogrammetria Vol. 1,
Levrotto e Bella,
ISBN: 9788882180287

A. Selvini, Elementi di fotogrammetria
Città Studi
ISBN: 9788825171013

Other resources:
Lecture Slides (Available on the Elly web portal)

Teaching methods

The subject is designed for Environmental and Civil engineering students and is developed on in-class lectures presented mainly using powerpoint slides, in-class and on-site practical activities and group in-class and home activities. In the last part of the course seminar activities are offered to the class deepening some of the topics covered in the lectures. Every student is expected to produce a final surveying project assisted by the teaching staff (mid-term revisions).

Assessment methods and criteria

The course is graded based on
Oral exam and
Project development and discussion in which, individually the student is expected to choose an object to be photogrammetrically surveyed (any object having a minimal geometrical complexity can be chosen) providing camera calibration, image orientation and object reconstruction and restitution (3D model, orthophoto, etc.)

Grades will be determined using the following grades and based on the following aspects:
Project development and discussion (50%):
Illustration of theoretical topics (knowledge)
Application of knowledge to a real surveying case (applying knowledge)
Capability of autonomously choose the proper surveying techniques and restitution modes
(making judgments)
Oral Examination (50%):
Illustration of theoretical topics (knowledge)
Application of knowledge through exercises (applying knowledge)
Proper use of technical terminology (Comunication skill)

Other information

2030 agenda goals for sustainable development