MACHINE LEARNING FOR PATTERN RECOGNITION (2ST MODULE)
cod. 1006079

Academic year 2014/15
1° year of course - Second semester
Professor
Stefano CAGNONI
Academic discipline
Sistemi di elaborazione delle informazioni (ING-INF/05)
Field
Attività formative affini o integrative
Type of training activity
Related/supplementary
21 hours
of face-to-face activities
3 credits
hub: -
course unit
in - - -

Integrated course unit module: MACHINE LEARNING FOR PATTERN RECOGNITION

Learning objectives

Objective of the course is to provide the student with the ability to understand and apply the basic rules of machine learning and, in particular:

- to apply the most common statistical tests in classification among different categories

- to synthesize the structure of the optimal classifier and analyze its error performance

- to apply the most common feature extraction methods from input data

- to apply the most common statistical estimators in machine learning

- to apply the most common clustering algorithms in unsupervised learning


The abilities in applying the above-mentioned knowledge are in particular in the:

- design and performance analysis of classifiers in machine learning

- selection of the most appropriate features to discriminate input categories

- selection of the most appropriate clustering algorithms in the design of unsupervised classifiers

Prerequisites

Entry-level courses in linear algebra and probability theory, such as those normally offered in the corresponding 3-year Laurea course, are necessary pre-requisites for this course.

Course unit content

PART 1: Fundamentals (Bononi)
(follows ref [1] Ch 1-9)
_____________________________________________

1. Introduction:
- problem statement and definitions
- Examples of machine learning problems

2. Basic probability refresher:
- Bayes formula
- conditional density functions

3. Classical Decision Rules
- binary Bayes rule
- M-ary Bayes rule
- receiver operating curve (ROC) and its properties
- Glossary of equivalent terms in Radar detecton theory, hypothesis testing and
machine learning

4. Linear Algebra refresher
- Unitary and Hermitian matrices
- spectral decomposition (SD)
- covariance matrices and diagonalization

5. Feature extraction
- sufficient statistics
- feature extraction based on eigenvector analysis


6. Quadratic and linear classifiers
- discriminant functions
- classification with Gaussian vectors
- Bounds on classifiers error probability

7. parameter estimation
- maximum likelihood and properties
- bayes estimation: MMSE and MAP
- Bounds on MS error

PART 2: Advanced topics (Cagnoni)
________________________________________________________

8. Nonparametric estimation
- Parzen density estimation
- k-Nearest-Neighbor algorithm

9. Linear Discriminant Analysis
- Fisher linear classifier
- Support Vector Machines

10. Classifier evaluation:
- Generalization and overfitting (Training/validation/test sets)
- Performance indices, representations curve, confusion matrices
- Classification risk: are all errors equally relevant ?

11. Unsupervised classification and clustering
- K-means and Isodata algorithms
- Self-Organizing Maps
- Learning Vector Quantization
- Kohonen networks

------------------------------------------------------------

Full programme

- - -

Bibliography

[1] C. W. Therrien, "Decision, estimation and classification" Wiley, 1989
[2] C. M. Bishop "Pattern Recognition and Machine Learning", Springer, 2006.
[3] R O Duda, P, E. Hart, D. G. Stork, "Pattern classification", 2nd Ed., Wiley, 2001

Teaching methods

Classroom teaching, 42 hours.
In-class problem solving, 6 hours.

Homework regularly assigned.

Assessment methods and criteria

Part 1, Bononi: Oral only, to be scheduled on an individual basis. When ready, please contact the instructor by email at alberto.bononi[AT]unipr.it and by specifying the requested date. The exam consists of solving some exercises and explaining theoretical details connected with them, for a total time of about 1 hour. You can bring your summary of important formulas in an A4 sheet to consult if you so wish.

Part 2, Cagnoni: A practical project will be assigned, whose results will presented and discussed by the student both as a written report and as an oral presentation.

Other information

Office Hours

Bononi: Monday 11:30-13:30 (Scientific Complex, Building 2, floor 2, Room 2/19T).

Cagnoni: by appointment (Scientific Complex, Building 1, floor 2, email cagnoni[AT]ce.unipr.it).

2030 agenda goals for sustainable development

- - -

Contacts

Toll-free number

800 904 084

Student registry office

E. segreteria.ingarc@unipr.it

Quality assurance office

Education manager:
Elena Roncai
T. +39 0521 903663
Office E. dia.didattica@unipr.it
Manager E. elena.roncai@unipr.it

President of the degree course

Paolo Serena
E. paolo.serena@unipr.it

Faculty advisor

Alberto Bononi
E. alberto.bononi@unipr.it

Career guidance delegate

Guido Matrella
E. guido.matrella@unipr.it

Tutor professor

Alberto Bononi
E. alberto.bononi@unipr.it
Giulio Colavolpe
E. giulio.colavolpe@unipr.it
Riccardo Raheli
E. riccardo.raheli@unipr.it

Erasmus delegates

Walter Belardi
E. walter.belardi@unipr.it

Quality assurance manager

Paolo Serena
E. paolo.serena@unipr.it

Internships

not defined

Tutor students

not defined