MODELS AND DYNAMIC SYSTEMS
cod. 14838

Academic year 2009/10
2° year of course - Second semester
Professor
Maria GROPPI
Academic discipline
Fisica matematica (MAT/07)
Field
A scelta dello studente
Type of training activity
Student's choice
48 hours
of face-to-face activities
6 credits
hub:
course unit
in - - -

Learning objectives

<br />Aim of the course is to present some mathematical  models arising from Mechanics or more generally from Applied Sciences. Methods for the qualitative analysis of systems of ODEs are presented, with particular attention to equilibrium solutions and stability.<br /> 

Prerequisites

Knowledge of theory of ordinary differential equations is suggested.

Course unit content

<br />Dynamical systems: definitions, properties. Stability. Liapunov¿s methods  for stability of equilibrium solutions. <br />Linear models: from harmonic oscillator to resonance phenomena.<br /> Non linear model in population dynamics: the Lotka ¿Volterra system, prey-predator models, mathematical models in epidemiology.<br /><br />Non linear oscillators: Van der Pol equation, Duffing equation.<br /> An introduction to bifurcations: stationary bifurcations, Hopf bifurcations and limit cycles.<br />Poincarè-Bendixson Theorem for planar systems.<br /> Chaotic systems:  Lorenz model.<br /> Discrete dynamical systems: Feigenbaum map, period-doubling bifurcations.<br /> <br /> 

Full programme

- - -

Bibliography

<br />G.L. CARAFFINI, M. IORI, G. SPIGA, Proprietà elementari dei sistemi dinamici, Appunti per il corso di Meccanica Razionale, UNIVERSITA' DEGLI STUDI DI PARMA, a.a 1998-99;<br /> <br />G. BORGIOLI, Modelli Matematici di evoluzione ed equazioni differenziali, Quaderni di Matematica per le Scienze Applicate/2, CELID, TORINO, 1996; <br /> <br />R. RIGANTI, Biforcazioni e Caos nei modelli matematici delle Scienze applicate, LEVROTTO & BELLA TORINO, 2000;<br /> <br />M.W HIRSCH, S. SMALE, Differential Equations, Dynamical Systems and Linear Algebra, ACADEMIC PRESS, NEW YORK, 1974; <br /> <br />J.D. MURRAY, Mathematical Biology, SPRINGER-VERLAG, NEW YORK, 1989; <br /> J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, SPRINGER-VERLAG, NEW YORK, 1983. 

Teaching methods

The course consists mainly in oral lectures; a fundamental integration is represented by the numerical simulations in Matlab environment  of the mathematical models presented and discussed.

Assessment methods and criteria

- - -

Other information

- - -

2030 agenda goals for sustainable development

- - -